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Hardware-software co-design

Ø Valid placement and routing 𝑅!?

Ø Enough ressources on 𝐴?

𝜃

Mapping and routing 𝑅#ℒ

The hardware: 
Neuromorphic chip

The software:
Spiking neural network

…

…𝐴
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Hardware-software co-design
The software:

Spiking neural network

Ø Dataset
Ø Neuron Model
Ø #Neurons

Ø Connectivity 𝜃
Ø Weight Values 𝜃

Ø Technology
Ø Architecture
Ø Placement and Routing 𝑅!

Ø Architecture configuration 𝐴
(#Cores, Fan-I/O,…)

Objective: Objective:

Parameters: Parameters:

min
!
𝔼[ℒ(𝜃)]

Software Objective:

𝐶 𝜃, 𝐴, 𝑅" ≤ 0
Hardware Constraints:

Ø Minimize Loss ℒ Ø Power, Performance, Area: PPA

Fixed

Degree of Freedom (DoF)

Fixed

DoF

3min
!, "

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅" ≤ 0]

The hardware: 
Neuromorphic chip
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Hardware-software co-design

With gradient descent

Differentiable Non-differentiable 

𝐶 < 0: Under usage of resources
𝐶 = 0: Complete usage of resources
𝐶 > 0: Over usage of resources: Not mappable!

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

…But first, let’s get inspired from another method...

DeepR1

ℒ
Problem:

”Train a neural network with
fixed sparsity (e.g. 7 weights)
and unconstrained connectivity.”

1. Train and Penalize
Gradient Descent on
ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝜃 "

2. Prune
Set low weights to 0

𝜃 # < 7

3. Reassign
Reassign at random s.t.

𝜃 # = 7

Solution:
Dynamical architecture search

𝜃 !: Number of non-zero elements
𝜃 ": Sum of all elements

1. BELLEC, Guillaume, KAPPEL, David, MAASS, Wolfgang, et al.Deep rewiring:
Training very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

𝜃

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

…But first, let’s get inspired from another method...

Why is Jimmy telling you about this?

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

…But first, let’s get inspired from another method...

DeepR1

ℒ
𝜃

Problem:
”Train a neural network with
fixed sparsity (e.g. 7 weights)
and unconstrained connectivity.”

3. Reassign

1. Train and Penalize
Gradient Descent on
ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝜃 "

2. Prune
Set low weights to 0

𝜃 # < 7

Reassign at random s.t.
𝜃 # = 7

Solution:
Dynamical architecture search

𝜃 !: Number of non-zero elements
𝜃 ": Sum of all elements1. BELLEC,G, et al. Deep rewiring: Training very sparse deep networks. 2017.

𝐶 = 𝜃 ! − 7

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

1. Train and Penalize
Gradient Descent on

ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝛾(𝜃)

3. Match the constraints
Apply 𝜃 ← 𝑔(𝜃), s.t.

𝐶 𝜃 = 0

2. Create Headroom
Apply 𝜃 ← 𝑓(𝜃), s.t.

𝐶(𝜃) ≤ 0

Considerations:

• Computing the constraints load a lot.

DeepR1 ( ) Extension of DeepR𝐶 = 𝜃 " − 7

Ø Get 𝛾 𝜃 , a proxy of 𝐶 𝜃 .

Ø Evaluating 𝐶 𝜃 should be efficient.
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3. Reassign

1. Train and Penalize
Gradient Descent on
ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝜃 "

2. Prune
Set low weights to 0

𝜃 # < 7

Reassign at random s.t.
𝜃 # = 7

𝜃 !: Number of non-zero elements
𝜃 ": Sum of all elements

• 𝛾(𝜃) is a regularizer: a proxy of 𝐶 𝜃 .
It is a soft constraints, differentiable wrt

𝜃.

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

Considerations:

• Computing the constraints load a lot.

DeepR1 ( )
1. Train and Penalize
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Hardware-software co-design

1. Train and Penalize
Gradient Descent on

ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝛾(𝜃)

3. Match the constraints
Apply 𝜃 ← 𝑔(𝜃), s.t.

𝐶 𝜃 = 0

2. Create Headroom
Apply 𝜃 ← 𝑓(𝜃), s.t.
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Extension of DeepR
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Ø Evaluating 𝐶 𝜃 should be efficient.

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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The Mosaic2 as a case study

2: Dalgaty, T. et al. Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems. 2024 
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Ø Technology
Ø Architecture
Ø Placement and Routing 𝑅!

Ø Architecture configuration 𝐴
(#Cores, Fan-I/O,…)

Objective:

Parameters:

𝐶 𝜃, 𝐴, 𝑅" ≤ 0
Hardware Constraints:

The hardware: 
Neuromorphic chip

Ø Power, Performance, Area

Fixed

DoFManhattan

Size & Fan-I/O
of the different tiles

Systolic array
Memristor Crossbars

The Mosaic2 as a case study

2: Dalgaty, T. et al. Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems. 2024 
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Constraints of MOSAIC mappability = routing resources 

The Mosaic2 as a case study

2: Dalgaty, T. et al. Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems. 2024 
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Hardware-software co-design

3. Match the constraints

1. Train and Penalize
Gradient Descent on

ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝛾(𝜃)

2. Create Headroom

Apply 𝜃 ← 𝑔(𝜃), s.t.
𝐶 𝜃 = 0

Apply 𝜃 ← 𝑓(𝜃), s.t.
𝐶(𝜃) ≤ 0

Extension of DeepR

Ø Get 𝛾 𝜃 , a proxy of 𝐶 𝜃 .

Ø Evaluating 𝐶 𝜃 should be efficient.

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Fig. 1. Mosaic hardware architecture as our case study, with a small-world
connectivity layout. a) Details of the Mosaic architecture with distributed
Neuron Tiles (NT) and Routing Tiles (RT0 and RT1). Each NT integrates
incoming messages from its neighbors and send its output to the fabricate
through its routing neighbors (RT0). RT1s interface with RT0s to pass along
the spikes to other RTs. b) The cost of communication between NTs (number
of hops required to go from one to another) at different locations for a Mosaic
architecture of size 3 ⇥ 3.

DeepR with the proxy function to the case study of a hardware
architecture, based on the small-world connectivity (locally-
dense and globally-sparse) , i.e. the Mosaic architecture [10].
To evaluate our method, we optimize a fully routing-aware
small-world network to classify the spoken digits of the
Spiking Heidelberg Digit (SHD) dataset. We show that (i)
the recurrent network trained with our novel method becomes
fully mappable to the hardware architecture, and (ii) compared
to a non-routing optimized network, for the same memory
footprint it achieves 5% more accuracy point on SHD, and for
the same accuracy, it requires about one order of magnitude
less memory elements.

II. BACKGROUND

Neuromorphic Memory Mosaic Architecture

The Mosaic architecture is a two-dimensional systolic array
of modular computing cores (Neuron Tiles (NTs)), alternated
with routers (Routing Tiles (RTs)), which connect them to-
gether (as illustrated in Fig. 1a) [10]. The NTs (shown in
orange squares) host a cluster of all-to-all connected spiking
neurons arranged in a crossbar array, implementing the LIF
model, communicating to the neighboring routers. The RTs
(shown in blue and green squares) are also crossbar arrays,
either forwarding or blocking the incoming spikes, directing
them into the computing fabric. The Mosaic therefore takes
advantage of locality, both in computing and communication,
to reduce power usage while effectively implementing a small-
world-like densely-local and sparsely global connectivity.

DeepR

DeepR [15] is a method developed to train neural networks
under strict memory constraints, by enforcing a fixed limit
on the total number of active connections in the network.
We look at this constraint as a connection sparsity, defined
as the ratio of the number of active connections to the total
possible ones, S(✓) = |✓|0

N2 , where ✓ 2 RN⇥N represents the
network parameters for a network with N neurons, |✓|0 is the

L0-norm of ✓, counting its number of non-zero elements, and
S(✓) computes the sparsity of the weight matrix.

DeepR adjusts the network connectivity during training,
while ensuring the network operates within a pre-defined
memory budget (L0-norm of ✓) or target sparsity ŝ. The
following pseudo-code outlines the iterative steps of the DeepR

algorithm.

Algorithm 1 Simplified DeepR (adapted for connection spar-
sity)

1: Initialize network weights ✓ such that S(✓) = ŝ

2: while training not converged do

3: Perform SGD on L+ � · |✓|1
4: Prune weights: ✓0  f(✓) s.t. S(✓0)  ŝ

5: Reassign connections: ✓00  g(✓0) s.t. S(✓00) = ŝ

6: Update weights: ✓  ✓
00

7: end while

The DeepR algorithm begins by initializing the network
weights ✓ such that the sparsity constraint S(✓) = ŝ is
satisfied (Line 1). During each epoch, stochastic gradient
descent (SGD) is performed on a modified loss function
L+�·|✓|1, where the term �·|✓|1 encourages sparsity (Line 3).
The pruning function f(·) removes connections with weights
below a fixed threshold (Line 4), and the reassignment function
g(·) reallocates the inactive connections, ensuring the target
sparsity S(✓00) = ŝ (Lines 5). Finally, the updated weights ✓

00

replace the previous weights ✓ to complete the epoch (Line
6).

III. METHODS

Routing in Mosaic

To communicate information from a neuron in NTi to a set
of neurons in NTj , the information is routed through a series
of RTs. The number of RTs that the information traverses
is referred to as Hops, denoted by H(NTi,NTj). Fig. 1b
indicates the hop distance between a few neurons tiles of
different coordinates. Note that the memory required to route
the activity between NTs scales linearly with the number of
hops.

The routing algorithm used in the Mosaic architecture is a 1-
turn algorithm inspired by [16]. Through the RTs, information
from the source NT is routed first along the x-coordinate
of the destination NT, and then along its y-coordinate, as
illustrated in Fig. 2a. This stepwise routing ensures efficient
communication, while minimizing resource usage. Two types
of RTs are employed in the Mosaic architecture:

• RT0: These tiles are adjacent to NTs and can commu-
nicate directly with them. Additionally, RT0 tiles can
transmit information either vertically or horizontally to
other RTs, but do not support turning operations.

• RT1: These tiles are designed exclusively for transmitting
activities to other RTs. They can transmit data both in
the horizontal or vertical directions, and are capable of
performing turns.

distances 

The Mosaic as a case study

Fast approximation

Constraints of MOSAIC mappability = routing resources 

: Penalizing according to the distance

Not efficient Proportional to the 
connection distance

Ø Evaluating 𝐶 𝜃 should be efficient.

15
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following pseudo-code outlines the iterative steps of the DeepR

algorithm.

Algorithm 1 Simplified DeepR (adapted for connection spar-
sity)

1: Initialize network weights ✓ such that S(✓) = ŝ
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The Mosaic as a case study

Sparsity wrt. distances
p1 = 50%, p3 = 20%, pd>3=0% Example of network
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Sparsity level of inter-core distance pd=3 

Maximal resource allocation 
&p3

Fast approximation

Constraints of MOSAIC mappability = routing resources 

: Penalizing according to the distance

Not efficient Proportional to the 
connection distance

Ø Evaluating 𝐶 𝜃 should be efficient.
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The Mosaic as a case study
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&p3

1𝑃 = {5𝑝$, 5𝑝%, 5𝑝&, … }
Inter-core sparsity level, for core at distance 𝑑.

Sparsity level of inter-core distance pd=3 

𝐶(𝜃, 𝐴, 𝑅#) = 𝑃 𝜃 - *𝑃 ≤ 0

Fast approximation

Constraints of MOSAIC mappability = routing resources 

: Penalizing according to the distance

Not efficient Proportional to the 
connection distance

Ø Evaluating 𝐶 𝜃 should be efficient.

→ Good approximation: Low 𝜎!
→ Still non differentiable
→ A function of the precise configuration 𝐴: #Cores, Fan-I/O,…
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Hardware-software co-design

3. Match the constraints

1. Train and Penalize
Gradient Descent on

ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝛾(𝜃)

2. Create Headroom

Apply 𝜃 ← 𝑔(𝜃), s.t.
𝐶 𝜃 = 0

Apply 𝜃 ← 𝑓(𝜃), s.t.
𝐶(𝜃) ≤ 0

Extension of DeepR

Ø Get 𝛾 𝜃 , a proxy of 𝐶 𝜃 .

Ø Evaluating 𝐶 𝜃 should be efficient.

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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The Mosaic as a case study
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Sparsity:
𝑁! :	Number	of	potential	connections
𝜃 " ∶ Number of non-zero elements
𝜃 # ∶ Sum of all elements

𝑝# =
𝜃# "

𝑁#$
With:

Ø Get 𝛾 𝜃 , a proxy of 𝐶 𝜃 .

𝛾 𝜃 = 𝜃# %

𝐶(𝜃, 𝐴, 𝑅#) = 𝑃 𝜃 - *𝑃 ≤ 0

Fast approximation

Constraints of MOSAIC mappability = routing resources 

: Penalizing according to the distance

Not efficient Proportional to the 
connection distance

Ø Evaluating 𝐶 𝜃 should be efficient.

→ Good approximation: Low 𝜎!
→ Still non differentiable
→ A function of the precise configuration 𝐴: #Cores, Fan-I/O,…
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Hardware-software co-design

3. Match the constraints

1. Train and Penalize
Gradient Descent on

ℒ! 𝜃 = ℒ 𝜃 + 𝜆 · 𝛾(𝜃)
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!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

𝐴

ℒ

sweep

Acc

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

+5%

Non-dynamical 
architecture search

Ours

3. Cramer, B. et al. The Heidelberg spiking data sets for the systematic evaluation of spiking neural networks. 2020. 

[3]

Results on SHD

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]
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Hardware-software co-design

Further insights and outlook

min
!, #

𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅# ≤ 0]

23

→ A family of HW have the same accuracy

→ Accuracy is a function of sparsity profile
(inter-population sparsity based on their distance)



Take home message

Hardware architecture and routing-aware training for 
optimal memory usage: a case study 

The Mosaic ArchitectureSuch that 𝐶 = 0

Mathematical formulation of architectural 
and routing constrains: 𝐶 𝜃, 𝐴, 𝑅!

Developing a method inspired by DEEPR
min
&
𝔼 ℒ 𝜃 𝐶 𝜃, 𝐴, 𝑅! ≤ 0]

⇒ Get accuracy/memory improvement
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