

## Merging insights from artificial and biological neural networks

Does neuromorphic edge intelligence need spikes?

Charlotte Frenkel (<u>c.frenkel@tudelft.nl</u>)

Assistant Professor Dept. of Microelectronics, Delft University of Technology

NICE 2025, March 27th

#### Outline

① What are the key synergies between the bottom-up and top-down approaches?

2 How can we exploit these synergies for novel spike-based engineering solutions?

# Synaptic plasticity rules – Neuroscience as the starting point



Frenkel, NICE 2025

3

#### Neural network training – Bio-plausibility as the end goal Synergy with hardware: latency, memory access patterns



Frenkel, NICE 2025

[Lillicrap, Nat. Comms., 2016] [Nokland, NeurIPS, 2016] [Frenkel & Lefebvre, Front. Neur., 2020]

AI algorithms

**Neuroscience** 

HW efficiency and bio-plausibility are often two sides of the same coin!



## On our way to neuromorphic intelligence – Bottom-up or top-down?



### Outline

① What are the key synergies between the bottom-up and top-down approaches?

#### 2 How can we exploit these synergies for novel spike-based engineering solutions?

Let's use a 4-step recipe!

 Neuromorphic intelligence:

 2 should be fed by 1





Different users, environments, task requirements

#### More training data before deployment?

Issues: cost, robustness, flexibility

#### Data exchange with the cloud?

Issues: power budget, privacy



#### Why is on-chip learning over second-long timescales difficult? Let's solve a yet unsolved engineering challenge!



- Unrolling in time: very deep network (current learning ICs for static stimuli: ≤3 layers)
- Intractable memory/latency requirements
- No end-to-end on-chip solution to date

<u>Key challenge</u>: On-chip learning over long timescales while keeping a fine-grained temporal resolution

# 2) Select the (ML-informed) starting point

From BPTT to biologically plausible training



## 3) Use-case-driven feature set selection

Neuron model selection... driven by the application requirements!



## 4) Enforce space and time locality

Key steps to minimize memory requirements



Stochastic weight updates allow reducing weight resolution to 8 bits

## The ReckOn neuromorphic chip – Microphotograph and summary



|                   |                                                 |       |     |                  | _    |
|-------------------|-------------------------------------------------|-------|-----|------------------|------|
| Technology        | 28nm FDSOI CMOS                                 |       |     |                  |      |
| Core size         | 0.67 x 0.67 mm <sup>2</sup> 0.45mm <sup>2</sup> |       |     |                  |      |
| Die size          | 0.93 x 0.93 mm <sup>2</sup>                     |       |     |                  |      |
| SRAM              |                                                 | 138kB | + 0 | <b>kB ext. D</b> | RAM! |
| Network           | Spiking RNN                                     |       |     |                  |      |
| Training timespan | Max. 32k steps                                  |       |     |                  |      |
|                   |                                                 |       |     |                  | -    |



## The ReckOn neuromorphic chip – Key advantage of using spikes



- Event-driven / sparsity-aware computation
- Sensor-agnostic raw-data processing
- Task-agnostic processing and learning



Neuromorphic spiking sensor

[Frenkel, *ISSCC*, 2022]

## The ReckOn neuromorphic chip – Benchmarking



### Outline

① What are the key synergies between the bottom-up and top-down approaches?

#### 2 How can we exploit these synergies for novel spike-based engineering solutions?

#### Let's now look into spikes for low-latency applications!



Chauvaux

[N. Chauvaux et al., ISCAS'25 (accepted)] Extension preprints coming soon.

## Spiking neural networks for low-latency event-driven computation



have a memory overhead penalty.

A good case for bringing compute close to memory!

## Compute in memory (CIM) to the rescue of spiking neural networks







🖹 Sparse inputs?

X Non-linearity, noise, mismatch



- Low parallelism...  $\mathbf{x}$ 
  - ...but efficient event-driven
    - addition and accumulation!
  - Robustness

### Current digital CIM approaches for SNNs have a flexibility issue



#### Unlocking dataflow and resolution flexibility in digital CIM for SNNs



Solution:



👽 Utilization can be maximized



### Unlocking dataflow and resolution flexibility in digital CIM for SNNs





Weight

stationarity

or

Output

stationarity

#### FlexSpIM – A flexible spiking in-memory macro





TSMC 40nm, proven in silico!



FlexSpIM can be tailored to the use case and target specifications!

### Outline

① What are the key synergies between the bottom-up and top-down approaches?

#### 2 How can we exploit these synergies for novel spike-based engineering solutions?

#### Let's now look into spikes for low-latency applications!



[Y. Yang\*, A. Kneip\*, C. Frenkel, Trans. CAS AI, 2025] Open-source: github.com/cogsys-tudelft/evgnn

## Graphs – A better representation for event-based data?



#### From static graphs to dynamic graphs



<u>Challenge</u>: GNNs focus on static graphs, how we make them work for event-based data?

1) Graph building

2) GNN execution

N layers = information can propagate through N hops

For each event, only the N-hop neighborhood needs to be updated

AEGNN [Schaefer, CVPR, 2022]

#### AEGNN promises low-latency execution through local processing!



## Directed dynamic graphs for low-latency hardware acceleration



<u>Challenge</u>: GNNs focus on static graphs, how we make them work for event-based data?

Graph building
 GNN execution
 AEGNN [Schaefer, CVPR, 2022]

But information flows from the future to the past...?

Let's use directed graphs! HUGNet [Dalgaty, CVPR-W, 2023]

#### **Core insight**

Now, data is *really* exchanged locally, in an event-driven fashion!

**Core hardware contributions** 

- 1) Edge-free graph storage!
- 2) Neighborhood search decoupled in space-time
- 3) Parallel layer execution
- 4) No HW yet let's harvest OoMs with a simple design!

**EvGNN** – The first GNN-based hardware accelerator for event-based vision

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

Latency per event of 16µs (N-CARS, 87.8%) in a KV260 edge FPGA platform!

First hardware aligning with the temporal resolution of event-based cameras on a real-world benchmark. No custom silicon needed!

![](_page_30_Figure_0.jpeg)

![](_page_30_Figure_1.jpeg)

[Frenkel, ISSCC'22]

Yes, for sensor- and task-agnostic learning

![](_page_30_Figure_4.jpeg)

[Chauvaux, ISCAS'25]

![](_page_30_Picture_6.jpeg)

[Yang and Kneip, Trans. CASAI'25]

Yes, for low-latency event-based processing

#### The Cognitive Sensor Nodes and Systems (CogSys) Team

We bridge the bottom-up (bio-inspired) and top-down (engineering-driven) NeuroAI design approaches toward multi-scale, decentralized intelligence.

![](_page_31_Picture_2.jpeg)

# Funding acknowledgements

![](_page_31_Picture_4.jpeg)

Frenkel, NICE 2025