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What are the key synergies between the bottom-up and top-down approaches?
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Outline

How can we exploit these synergies for novel spike-based engineering solutions?
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Local in space
Non-local in time

Local in space
Local in time

Spike-timing-dependent plasticity (STDP) Spike-dependent synaptic plasticity (SDSP)
[Bi & Poo, J. Neurosci., 1998] [Brader, Neur. Comp., 2007]

Huge savings in silicon

Neuroscience

AI algorithms

Synaptic plasticity rules – Neuroscience as the starting point

[Frenkel, TBioCAS, 2019]

ODIN

…but hard to exploit.
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s

Computational and memory cost

[Lillicrap, Nat. Comms., 2016]   [Nokland, NeurIPS, 2016]   [Frenkel & Lefebvre, Front. Neur., 2020] 4

Output-independent 

target signals are also 

found in the brain!

[Magee & Grienberger,

Ann. Rev. Neuro., 2020]

Neural network training – Bio-plausibility as the end goal
Synergy with hardware: latency, memory access patterns

Only ~15% overhead

in power and area

[Frenkel, ISCAS’20]

Neuroscience

AI algorithms
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Bringing AI closer to neuroscience leads to hardware efficiency

Designing efficient hardware hints toward bio-plausible mechanisms

HW efficiency and bio-plausibility are often two sides of the same coin!
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should be fed by 

Neuroscience

AI algorithms

6

Neuromorphic hardware

Science

AI without hardware is unsustainable

Natural
synergy

1

1

2

2

Bottom-up science-driven approach

Top-down engineering-driven approach

Analysis-by-synthesis
Difficult to scale efficiently to real-world problems

Starts from working solutions to real-world problems
Which “salt & pepper” from neuroscience?

Neuromorphic intelligence:
12

Engineering

On our way to neuromorphic intelligence – Bottom-up or top-down?
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What are the key synergies between the bottom-up and top-down approaches?
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How can we exploit these synergies for novel spike-based engineering solutions?

Let’s use a 4-step recipe!

should be fed by 

Neuromorphic intelligence:
12
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(in-distribution) (performance within specs)
Inference 

device
Data Decision

8

Image

Video

Speech

1)  Pick the use case
Why on-device learning is key!
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(out-of-distribution) (performance    )
Inference 

device
Data Decision

Different users, environments, task requirements

More training data before deployment?
Issues:  cost, robustness, flexibility

Data exchange with the cloud?
Issues:  power budget, privacy

On-chip training
(end-to-end)

9

Image

Video

Speech

1)  Pick the use case
Why on-device learning is key!
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Key challenge: On-chip learning over long timescales
while keeping a fine-grained temporal resolution

Time
Error

Exact BPTT 
gradients

Video

Speech

...

...

• Unrolling in time: very deep network

• Intractable memory/latency requirements

• No end-to-end on-chip solution to date

(current learning ICs for static stimuli: ≤3 layers)

Why is on-chip learning over second-long timescales difficult?
Let’s solve a yet unsolved engineering challenge!

10

Obviously, the brain doesn’t do that!
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Time
Error

Exact 
gradients

...

...

Time

Error

Learning 
signals

Eligibility 
traces

Current 
timestepAll  

timesteps

Backprop through time (BPTT, backward) Eligibility propagation (e-prop, forward)
[Bellec, Nat. Comms’20]

e-prop

11

Key concept: space and 
time locality (again!)

And the brain is a good 
source of inspiration for this!

2)  Select the (ML-informed) starting point
From BPTT to biologically plausible training
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3) Use-case-driven feature set selection

Neuroscience

AI algorithms

Neuromorphic hardware

Engineering

Science

shoud be fed by 

Neuromorphic intelligence:

12

12

BPTT

Eligibility 
traces

e-prop

Simplified 
e-prop

Config. LIF

Threshold 
adaptation

HW tractability?
Bio plausibility?

Long timescales?

Space & time 
locality

e-prop – LIF (t=20ms)
e-prop – ALIF (t=20ms,200ms)

e-prop – Cfg LIF (t=20ms-2s)

Navigation task

Time [s]0.0 1.0 2.0

Input

State

Output

Neuron model selection… driven by the application requirements!

1) Pick the use case
On-chip 

learning of 
temporal data 2) Select the 

  (ML-informed)
  starting point

3) Use-case-driven 
     feature set

4)
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Time
Error

Learning 
signals

Eligibility 
traces

winp wout

wrec

13

Local decoupling of space and time:

Stochastic weight updates allow reducing weight resolution to 8 bits

Memory overhead scales 
with #synapses in O(N²)

- Pre-synaptic term: activity low-pass filtering 
- Post-synaptic term: surrogate derivative of the 
                                       spiking activation function

Scales with 
#neurons in O(N)

4) Enforce space and time locality
Key steps to minimize memory requirements

Memory overhead 
of only 1%!



Frenkel, NICE 2025

93
3µ

m

933µm

Wrec SRAM (64kB)

Neur SRAM (2kB)Wout SRAM (8kB)

Winp SRAM (64kB)

Controller FSM,
SPI and AE interfaces,
neuron update logic,
weight update logic

67
1µ

m

671µm

28nm FDSOI CMOS
0.67 x 0.67 mm²
0.93 x 0.93 mm²

138kB
Spiking RNN

Max. 32k steps

Technology
Core size
Die size
SRAM

Network
Training timespan

0.45mm²

14

+ 0kB ext. DRAM!

[Frenkel, ISSCC, 2022]

The ReckOn neuromorphic chip – Microphotograph and summary
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§ Event-driven / sparsity-aware computation
§ Sensor-agnostic raw-data processing
§ Task-agnostic processing and learning

93
3µ

m

933µm

Wrec SRAM (64kB)

Neur SRAM (2kB)Wout SRAM (8kB)

Winp SRAM (64kB)

Controller FSM,
SPI and AE interfaces,
neuron update logic,
weight update logic

67
1µ

m

671µm
.

Address
events (AEs)

Neuromorphic 
spiking sensor

ReckOn

[Frenkel, ISSCC, 2022]

The ReckOn neuromorphic chip – Key advantage of using spikes
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NavigationVision Audition.

Time

Ti
m
e

Time
Accuracy: 87.3%  (28µW @0.5V) Accuracy: 90.7%  (46µW @0.5V) Accuracy: 96.4%  (14µW @0.5V)

16

Delayed-supervision
cue accumulation

Gesture recognition
(DVS Gestures dataset)

Keyword spotting
(Spiking Heidelberg Digits dataset)

The ReckOn neuromorphic chip – Benchmarking
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What are the key synergies between the bottom-up and top-down approaches?
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How can we exploit these synergies for novel spike-based engineering solutions?

Nicolas 
Chauvaux

[N. Chauvaux et al., ISCAS’25 (accepted)]
Extension preprints coming soon.

Let’s now look into spikes for 
low-latency applications!
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Spiking neural networks for low-latency event-driven computation

Time

Spiking neural networks
have a memory overhead penalty.

The state of all neurons has to be maintained at all times!

A good case for bringing compute close to memory!

Temporal 
resolution: 

~10μs
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Compute in memory (CIM) to the rescue of spiking neural networks 

Analog CIMSRAM

AD
C

AD
C

AD
C

AD
C

AD
C

DAC

DAC

DAC

DAC

DAC

Digital CIM

Peripheral Circuit (PC)

x W

W·x

Efficient MVM!
Sparse inputs?
Non-linearity, noise, mismatch

Robustness

Low parallelism…
…but efficient event-driven 
addition and accumulation!
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W
V

PC

Inefficient mapping
Needs hardwiring

8b
8b
4b

SoA: IMPULSE

Current digital CIM approaches for SNNs have a flexibility issue

[Agrawal, SSC-L, 2021]
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Unlocking dataflow and resolution flexibility in digital CIM for SNNs 

4bW
V

PC

8b

Solution: arbitrary resolution/mapping

W
V

PC

Inefficient mapping
Needs hardwiring

8b

SoA: IMPULSE

EB
CB

0 1 2 3
4567

0 1 2 3

Utilization can be maximized
Flexible dataflow

3bW

V 9b
0 1 2

345

0 1 2
876

4b

[Agrawal, SSC-L, 2021] FlexSpIM
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Unlocking dataflow and resolution flexibility in digital CIM for SNNs 

PC

Solution: arbitrary resolution/mapping

W
V

PC

Inefficient mapping
Needs hardwiring

8b

SoA: IMPULSE

EB
CB

Utilization can be maximized
Flexible dataflow

W

V

Weight 
stationarity

Output 
stationarity

or

4b

[Agrawal, SSC-L, 2021] FlexSpIM
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FlexSpIM – A flexible spiking in-memory macro 

TSMC 40nm, proven in silico!
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Highlights – CIM flexibility enables system-level savings

FlexSpIM can be tailored to the use case and target specifications!

HS: 23.4kB
HS: 306kB

OS: 259.5kB
WS: 69.8kB

[IMPULSE]

[Liu,
ISSCC,
2024]

FlexSpIM

Different 
properties!

FlexSpIM

IBM DVS Gesture dataset

Ext. 
Memory

1fJ-1pJ

CoreRF

IMC 
core

~1nJ/access
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What are the key synergies between the bottom-up and top-down approaches?
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How can we exploit these synergies for novel spike-based engineering solutions?

Adrian 
Kneip

Yufeng 
Yang

[Y. Yang*, A. Kneip*, C. Frenkel, Trans. CAS AI, 2025]
Open-source: github.com/cogsys-tudelft/evgnn

Let’s now look into spikes for 
low-latency applications!
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Graph Neural Network (GNN)

26

Graphs – A better representation for event-based data?

Nodes are events 
(x,y,polarity,timestamp)

Edges denote
spatiotemporal 

neighbors

Each layer
=

message passing 
between nodes

Data is only
exchanged locally, 

within neighborhoods!
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From static graphs to dynamic graphs

N layers = information can propagate through N hops

Challenge: GNNs focus on static graphs,
how we make them work for event-based data?

1)  Graph building

2)  GNN execution

For each event, only the N-hop neighborhood 
needs to be updated 

AEGNN [Schaefer, CVPR, 2022]
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AEGNN promises low-latency execution through local processing!

GEN1 automotive detection dataset N-Caltech101

[Schaefer, Nature, 2024]

40x less MFLOPS/event!
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Ev
GN
N

29

Directed dynamic graphs for low-latency hardware acceleration

Challenge: GNNs focus on static graphs,
how we make them work for event-based data?

AEGNN [Schaefer, CVPR, 2022]

But information flows from the future to the past…?

Nodes are events 
(x,y,polarity,timestamp)

HUGNet [Dalgaty, CVPR-W, 2023]
Let’s use directed graphs!

1-hop sub-graph

1)  Graph building
2)  GNN execution

Now, data is really exchanged locally,
in an event-driven fashion!

Core hardware contributions

Core insight

2)  Neighborhood search decoupled in space-time
1)  Edge-free graph storage!

3)  Parallel layer execution
4)  No HW yet – let’s harvest OoMs with a simple design!
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EvGNN – The first GNN-based hardware accelerator for event-based vision

Latency per event of 16µs (N-CARS, 87.8%) 
in a KV260 edge FPGA platform!

First hardware aligning with the temporal 
resolution of event-based cameras on a real-
world benchmark. No custom silicon needed!
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@C_Frenkel
cfrenkel

ChFrenkel
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c.frenkel@tudelft.nl

cogsys.tudelft.nl
Does neuromorphic edge intelligence need spikes?

Yes, for sensor- and 
task-agnostic learning

ReckOn
EvGNN

FlexSpIM

Yes, for low-latency event-based processing

[Frenkel, ISSCC’22] [Chauvaux, ISCAS’25] [Yang and Kneip, Trans. CASAI’25]
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The Cognitive Sensor Nodes and Systems (CogSys) Team

We bridge the bottom-up (bio-inspired) and top-down (engineering-driven) 
NeuroAI design approaches toward multi-scale, decentralized intelligence.

Funding 
acknowledgements


