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INntroduction

- Current Al solutions are extremely
compute intense

- Transformers resource requirements
grow quadratically with context length in
their vanilla form

=>je.linear attention

- Alternative architectures and hardware is
needed

Neuromorphic Computing Lab
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State-space models as alternative to Transformers

Model sMINIST psMINIST sCIFAR

{(Input length) (784) (784) (1024)
. Transformer (Vaswani et al., 2017; Trinh et al., 2018) 98.9 97.9 62.2
- SSMs outperform Transformers in many
t k CCNN (Romero et al., 2022) 99,72 98.84 93.08
asKS LipschitzRNN (Erichson et al., 2020) 994 96.3 64.2
- Compute scales linearly with context LSSL (Gu et al., 2021b) 99.53 98.76 84.65
54 (Gu et al., 2021a; 2022) 99.63 98.70 91.80
Iength S4D-LegS (Gu et al., 2022) - - 89.92
-S4 basis of large-scale language models Liquid-S4 (Hasani et al., 2022) - - 92.02
S5 (Smith et al.. 2022) 99.65 98.67 90.10
such as Mamba Q-85 (8 bit precision PTQ) (Abreu et al., 2024) 96.27 - 44.83
Q-55 (8 bit precision QAFT) (Abreu et al., 2024) 99.54 - 86.95
AHP SNN on Loihi 1 (Rao et al., 2022) 96.00 - -
Long-Range Arena WikiText-103 language modeling
MODEL ListOps TEXT RETRIEVAL IMAGE PATHFINDER PATH-X Ave Model Params Test ppl. Tokens / sec
Transformer 36.37 64.27 57.46 42.44 71.40 X 53.66 Transformer 247M 20.51 0.8K (1 % )
Reformer 37.27 56.10  53.40 38.07 68.50 X 50.56
BigBird 36.05 64.02  59.29 40.83  74.87 X 54.17 GLU CNN 229M 37.2 -
Linear Trans. 16.13 65.90 53.09 4234 75.30 X 50.46 AWD-QRNN 151M 33.0 -
Performer 18.01 65.40  53.82 42.77 77.05 X 51.18 LSTM + Hebb. - 299 -
FNet 35.33 65.11  59.61 38.67  77.80 X 54.42 TrellisNet 180M  29.19 -
Nystromformer — 37.15 65.52 79.56 41.58 70.94 X 57.46 Dynamic Conv.  255M 25.0 -
Luna-256 37.25 64.57 79.29 47.38 T7.72 X 59.37 TaLK Conv. 240M 23.3 -
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09 S4 249M 20.95 48K (60x)

Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with
structured state spaces." arXiv preprint arXiv:2111.00396 (2021).
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SSMs: Neuromorphic-friendly alternative to
transformers

¥(t)
Application examples

EEG

4 )
[

u(t)

S4D Recurrent View

Speech

’f

Gu, Albert et al "On the parameterization and initialization of diagonal state space models.” Advances in Neural Information Processing
Systems 35 (2022): 35971-35983.

4 e ",/’aln\ > S—
/\/ —* S
R x4 Bu urrel . Time Series Forecasting
y =Cx+Du y =Cx+ Du |
Continuous Recurrent Convolutional P o
Representation Representation Representation i

Image from blog post Structur tat - Combinin ntin -Time,. Recurrent. an nvolutional

Modaels by Albert GU et al. (2022)

NCL intel labs
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https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3
https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3

S4D neuron dynamics match
Resonate-And-Fire neurons

Resonate and Fire neurons compute optical flow for event-cameras
with higher accuracy and 90x fewer ops thanleading DNN solution

Resonate & Fire Neuron Behavior

----- threshold
—— u=real(z)
————— v=imag(z)
e X spike

0 50 100 150
timestep

zi[t] = et [t — 1] + a[t]

Optical Flow for Event Cameras

Sanja Karilanova

State Space Model

A
(t) <
x .
’( 1 Resonator “neuron model”
Fully supported by Loihi 2
[ - I Yy supp y

ult)

54D Recurrent View

G. Orchard et al, “Efficient Neuromorphic Signal Processing with Loihi 2" IEEE International Workshop on Signal Processing Sy stems, Coimbra, Portugal, Oct 2021

S.Shrestha et al, “Efficient Video and Audio Processing with Loihi2” ICASSP 2024

NGB Neuromorphic Computing Lab
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Recurrent networks give the best gains on Loihi

1000 ¢
Reference ® g ®  [Task 1] Keyword Spotter DNN
. I Recurrent 9 i i
a rCh itecture I . el h ® ® S ®  [Task 1] Keyword spotting (batch size = 1)
100 ¢ O | @ [Task2] Image retrieval (batch size 1)
@ CPU (Intel Core/Xeon) - ® £
o = - . ® _5 ® [Task 2] Image retrieval [batch size > 1)
@ GPU (Nvidia) < : & 3
o P 0 * 5 | ® [Task 3] Image Segmentation
A\ Movidius (NCS) ¢ e m . ® z
‘E‘ E S 8 ®  [Task 4] CIFAR-10 classification
. TrueNorth 5 I "\\ A py < | W [Task 5] DV5 gesture recognition vs TrueMorth
b (]
v 1 L * A ® L c i i i
= e ‘T | ® ask 6] Visual-tactile sensing [SLAYER
E ; b % » » (Better on Loihi) % [Task 6] gl )
< [ % = [Task 7] Seq MNIST [batch size 1)
2 I . (] g
5 01 E ) &) [Task 7] Seq MNIST (batch size 64)
0 i ™
v C O ¢  [Task 8] Adaptive arm controller (PES)
- T e [Task9] LASSO
001 E ® * b A
& s @,«7 — | ® [Task10] 1DSLAM
: @ NG 2
I NS 2 | ® [Task11] k-NN GIST 1M
(Worse on Loihi) Y.
[].[]Dl I bbbl I L1l I bbb il I I I Lodiinil I [ ] [TﬂSklz]GrﬂphEEﬂrCh
0.1 1 10 100 1000 10000 100000 ) ) )
® [Task 13] Constraint Satisfaction
Energy Ratio (vs Loihi) Unit energy delay product (EDP) ratio

M. Davies et al, “Advancing Neuromonohic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021 Results may vary.
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_oihi 2 architecture
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_oihi 2 architecture

Neuromorphic cores (126)
Programmable neuron models
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_oihi 2 architecture

Neuromorphic cores (126)
Programmable neuron models
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_oihi 2 architecture

Neuromorphic cores (126)
- Programmable neuron models
Parallel 10 Programmable learning
= Up to 8192 neurons per core
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_oihi 2 architecture

Neuromorphic cores (126)
- Programmable neuron models
Parallel 10 Programmable learning
S Up to 8192 neurons per core
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Loihi 2 Systems

Kapoho Point Kapoho Point KP Stack Alia Point Hala Point
1chip 8 chips 32 chips 128 chips 152 chips
Datacenter High
Performance
Computing
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NCL

N-S4D: bringing S4D to Loihi 2

Model architecture

y(®)
/ Hxl H HN xH HN HxNH H HH H 10H 10 p
C
——F
A )
- - x(t) 7 <
- Q. EX.pan Re.duc . MiXing . ) : : D- ()—E r -
sion tion — [ 2
A |
(& B J
u(t)
Encoder S4D block (expanded) S4D blocks Decoder S4D Recurrent View
Guetal. 2022

Neuromorphic adaptations to S4D Twomodel sizes for different tasks

*  Only RelLU activations for sparseification (p)SMNIST:

* Nonormalization layers »  Small model (H=64, N=32) using 31 cores (67k parameters)

Neuron dynamics SCIFAR:

* Inn-S4D, all matrices are diagonal -> no non-local information is needed

* Implement the complete neuron dynamics as programmable neuron

+ Higher bit-precision (24bits instead of 8bits)

*  Less on-chip communication

Neuromorphic Computing Lab

+ Large model (H=128, N=64) using 111 cores (265k parameters)

intel labs
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Training and deployment pipeline

Quantization Aware

Full-precision Post Training

Training ‘ Quantization Fine Tuning
(convolutional (recurrent (recurrent
representation) representation) representation)
» Fast convolutional * Apply = Apply fake-
pre-training in full- quantization quantization
precision (de)scaling
. Architecture directly without " Keep parameters
retraining in floating-point
search and precision
baseline Loss of
precision = Mimic loss of
precision
Performance
might drop = Allowsretraining

NGB Neuromorphic Computing Lab

Sirine Arfa

» Results of QAFT
and on Loihi 2
match exactly
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Results

- n-S4Dreaches similar Model SMNIST psMNIST sCIFAR
performance as the original S4D (Input length) (784) (784) (1024)
model in full-precision and Transformer (Vaswani et al., 2017; Trinh et al., 2018) 98.9 97.9 62.2
outperforms transformers CCNN (Romero et al., 2022 99.72 98.84 93.08

- PTQcanleadto a significant LipschitzRNN (Erichson et al., 2020) 99.4 96.3 64.2
drop in accuracy LSSL (Gu et al., 2021b) 99.53 98.76 84.65
T v b S4 (Gu et al., 2021a; 2022 99.63 98.70 91.80

- € accuracy can mostly oe S4D-LegS (Gu et al., 2022) - - 89.92
recovered by QAFT Liquid-S4 (Hasani et al., 2022 - - 92.02

_ S5 (Smith et al., 2022) 99.65 98.67 90.10

- SOTA is CCNN (2M parameters Q-S5 (8 bit precision PTQ) (Abreu et al., 2024) 96.27 - 44.83

vs 256k for n—S4D) (QQ-S5 (8 bit precision QAFT) (Abreu et al., 2024) 99.54 - 86.95
AHP SNN on Loihi 1 (Rao et al., 2022 96.00 - -
n-S4D, full precision (Ours) 99.51 97.53 86.53
n-S4D, after PTQ (Ours) 99.20 92.45 71.74
n-S4D, on Loihi 2 after QAFT (Ours) 99.20 96.16 84.13

N®B® Neuromorphic Computing Lab intel labs 15




Streaming vs batched processing

Streaming (token-by-token) Batched (sample-by-sample)

= Datapoints / tokens arriveinreal = Data is readily available
time from a source with a (high)

| = Batches of samples can be
sampling-rate

processed simultaneously

= Difficulty: keep up with the
sampling rate -> minimize latency

@ SO

¥
BEERC

= Difficulty: maximize throughput

SI

S2

Neuromorphic Computing Lab intel labs 16
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Optimizing latency and throughput on Loihi 2

input
layer O

layer 1

layer n

input
layer 0

layer 1

layer n

"~ input interval

t1

Fall-through
mode

,—-_
“gﬁs

layer compute
time

—
F

latency

,\
bﬁ

Pipelined mode

3 t4

e

e~

A A =<
=
~—~

Neuromorphic Computing Lab

Optimizes latency
Process one sample as fast
as possible

Optimizes throughput
Insert data each timestep
Speed determined by
slowest core/ layer

intellabs 7



Streaming diagonal SSMs run extremely well on Loihi 2
compared to an edge GPU (Jetson Orin Nano)

CCNN [leader] 99.72 98.84 93.08
S4Don Loihi 2 256k 99.20 96.16 84.13

Token-by-token processing Energy (mJ) Latency (ms) Throughput

Loihi 2 (fall-through) 8413 0.016 0.066 15,260
Orin Nano GPU (recurrent) 8653 1611 4.98

token-by-token inference
e :

Loihi 2 massively outperforms versus GPU
when processing streaming data with S4D

Sample-by-sample processing - Energy (mJ) Latency (ms) Throughput

Convolutional SSM evaluation on GPU Loihi 2 (pipelined) 84.13 10.36 12.74

outperform s when all tokens per sample can Orin Nano GPU (conv. batch1) 8653 26.89 6.33 158
be processed as a batch Orin Nano GPU (conv. batch64) 86.53 0.961 8.476 7,550

GPU advantage 0.39x /11x 2x [ 94x

Loihi 2 workloads were characterized on an Oheo Gulch system with N3C2-revision Loihi 2 chips running on NxCore 2.5.8 and alpha version of the NxKernel APl with on-chip IO unthrottled sequencing
of input tokens. * GPU workloads were characterized on an NVIDIA Jetson Orin Nano 8GB 15W TDP running Jetpack 5.1.2, TensorRT 8.6.1, Torch-TensorRT 1.3.0. Energy values include CPU GPU CV
and SOC components as reported by jtop. ¥ Performance results are based on testing as of September 2024 and may not reflect all publicly available security updates . Results may vary.
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Recurrent networks with streaming tasks
work well on Loihi 2

1000 ¢
100 E
. F
o
£
3 10 ko
n E
>
A
el
=
[}
14 1k
o $
£ i
— I
C
L 01
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o
n
001 |
0.001

(batched)

(Worse on Loihi) / e

==

CLP OpenLORIS
. 2 L 3 e $
° Sparse MLP
x.\\‘\
L e
: SDNN-DNS [ ] RESTFT
hEE

@ S4D (strealﬂir:g)

SDNNPilotNet @ oo @ o 5
@ cie

~ / (Better on Loihi)

b3
Ll P Y] L1111l

0.1

1

10

100 1000 10000 100000

Energy Ratio (vs Loihi 2)

[Loihi 2] QUBO Max Independent Set
[Loihi 2] RF STFT

[Loihi 1] PilotNet (batch size 1)
[Loihi 2] PilotNet (batch size 1)
[Loihi 2] PilotNet (batch size 16)
[Loihi 2] YOLOV3-KP (batch size 1)
[ ]

[ ]

[ ]

[ ]

[

L

* * O

Loihi 2] MLP RF Classification (batch size 1)
Loihi 2] SDNN Noise Suppression

L

Loihi 2] 4D per-token (batch size 1)
Loihi 2] S4D per-sample (batch size 1)
Loihi 2] S4D per-sample (batch size 64)
----- Unit energy delay product (EDP) ratio

Reference architecture
CPU (Intel Core/Xeon)

GPU (Nvidia)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 202]. Results may vary.

Neuromorphic Computing Lab
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Outlook

- S4Disthefoundationfor SOTA state-space models such as Mamba, Vision Mamba, etc
- Use SSMsinreal-world applications on neuromorphic hardware
- Advancetomore modern versions of SSMs such as S5:

Pierro, Alessandro, et al. "Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity.” arXiv preprint
arXiv:2502.01330 (2025).

- Go altemative routes such as MatMul-Free L. Ms

Abreu, Steven, et al. "Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2." First Workshop on Scalable Optimization for
Efficient and Adaptive Foundation Models.

e

eam Svea Marie Leobardo | Sumit Bam Philipp o Jc;ﬁéthan Mathis
Meyer Plank Campos- Shrestha Stratmann Timcheck Richter
Macias
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egal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage intrade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.
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