
NCL Neuromorphic Computing Lab

Svea Marie Meyer, Philipp Weidel, Philipp Plank, Leobardo 
Campos-Macias, Sumit Bam Shrestha, Philipp Stratmann, 
Jonathan Timcheck, Mathis Richter

A Diagonal State Space Model 
on Loihi 2 for Streaming 
Sequence Processing 

NICE 2025 – March 27, 2025



2NCL Neuromorphic Computing Lab

- Current AI solutions are extremely 
compute intense

- Transformers resource requirements 
grow quadratically with context length in 
their vanilla form

=> i.e. linear attention

- Alternative architectures and hardware is 
needed

Introduction

https://en.softonic.com/articles/openai-breaks-barriers-with-the-o3-model-is-general-
artificial-intelligence-near
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State-space models as alternative to Transformers

- SSMs outperform Transformers in many 
tasks

- Compute scales linearly with context 
length

- S4 basis of large-scale language models 
such as Mamba

Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with 
structured state spaces." arXiv preprint arXiv:2111.00396 (2021).

Long-Range Arena WikiText-103 language modeling
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SSMs: Neuromorphic-friendly alternative to 
transformers

Image from blog post Structured State Spaces: Combining Continuous-Time, Recurrent, and Convolutional 
Models by Albert GU et al. (2022)

Application examples

EEG

Speech

Time Series Forecasting

Gu, Albert, et al. "On the parameterization and initialization of diagonal state space models." Advances in Neural Information Processing 
Systems 35 (2022): 35971-35983.

https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3
https://hazyresearch.stanford.edu/blog/2022-01-14-s4-3
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S4D neuron dynamics match 
Resonate-And-Fire neurons

Optical Flow for Event Cameras

G. Orchard et al, “Efficient Neuromorphic Signal Processing with Loihi 2” IEEE International Workshop on Signal Processing Systems, Coimbra, Portugal, Oct 2021
S. Shrestha et al, “Efficient Video and Audio Processing with Loihi 2” ICASSP 2024

Resonate & Fire Neuron Behavior

u

v

Resonate and Fire neurons compute optical flow for event-cameras 
with higher accuracy and 90x fewer ops than leading DNN solution

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡

𝑦𝑡+1 = 𝐶𝑥𝑡+1

State Space Model

𝑥𝑡+1
(𝑘)

= 𝑎𝑘𝑒
𝑖𝜔𝑘Δ𝑡𝑥𝑡

𝑘
+ 𝐵𝑢𝑡

Resonator “neuron model”
Fully supported by Loihi 2

Sanja Karilanova
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Recurrent networks give the best gains on Loihi

CPU (Intel Core/Xeon)

GPU (Nvidia)

Movidius (NCS)

TrueNorth

Reference
architecture
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(Better on Loihi)

(Worse on Loihi)

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021. Results may vary.
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Loihi 2 architecture
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Neuromorphic cores (126)
Programmable neuron models

Programmable learning
Up to 8192 neurons per core

Communication with graded spikes

3D scaling support

Technology: Intel 4

31 mm2

Neuro cores: 126

CPU cores: 5

Max # neurons: 1 M

Max # synapses: 123 M

Transistors: 2.3 B

Memory: 24 MB
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Loihi 2 architecture
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Neuromorphic cores (126)
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Parallel off-chip interfaces (6)
Async wave pipelined at 10 Gb/s

with multicast compression

Microprocessor cores (5)
Synchronous x86 (2)

Asynchronous RISC-V (3)

10G/25G Ethernet
Accelerated  host message + spike I/O

3D scaling support

Technology: Intel 4

31 mm2

Neuro cores: 126

CPU cores: 5

Max # neurons: 1 M

Max # synapses: 123 M

Transistors: 2.3 B

Memory: 24 MB
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Loihi 2 Systems HP announcement?

Kapoho Point
8 chips

KP Stack
32 chips

Alia Point
128 chips

Datacenter

Hala Point
1152 chips

High 
Performance 

Computing

Kapoho Point
1 chip
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N-S4D: bringing S4D to Loihi 2

       

         

                           

       
      

    

      

    
          

      

    

                              

         

       

Model architecture

Gu et al. 2022

Neuromorphic adaptations to S4D

• Only ReLU activations for sparseification

• No normalization layers

Neuron dynamics

• In n-S4D, all matrices are diagonal -> no non-local information is needed

• Implement the complete neuron dynamics as programmable neuron

• Higher bit-precision (24bits instead of 8bits)

• Less on-chip communication

Two model sizes for different tasks

(p)sMNIST:

• Small model (H=64, N=32) using 31 cores (67k parameters)

SCIFAR:

• Large model (H=128, N=64) using 111 cores (265k parameters)
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Training and deployment pipeline

• Apply 
quantization 
(de)scaling 
directly without 
retraining

• Loss of 
precision

• Performance 
might drop

• Apply fake-
quantization

• Keep parameters 
in floating-point 
precision

• Mimic loss of 
precision

• Allows retraining

Full-precision 
Training

(convolutional 
representation)

Post Training 
Quantization

(recurrent 
representation)

Quantization Aware 
Fine Tuning

(recurrent 
representation)

• Fast convolutional 
pre-training in full-
precision

• Architecture 
search and 
baseline

• Results of QAFT 
and on Loihi 2 
match exactly

Sirine Arfa 
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Results

- n-S4D reaches similar 
performance as the original S4D 
model in full-precision and 
outperforms transformers

- PTQ can lead to a significant 
drop in accuracy

- The accuracy can mostly be 
recovered by QAFT

- SOTA is CCNN (2M parameters 
vs 256k for n-S4D)
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Streaming vs batched processing

Streaming (token-by-token)

• Datapoints / tokens arrive in real 
time from a source with a (high) 
sampling-rate

• Difficulty: keep up with the 
sampling rate -> minimize latency

Batched (sample-by-sample)

• Data is readily available

• Batches of samples can be 
processed simultaneously

• Difficulty: maximize throughput

T-4 T-3 T-1T-2 T

T-4 T-3 T-1T-2 T

T-4 T-3 T-1T-2 T

T-4 T-3 T-1T-2 T

S0

S1

S2
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Optimizing latency and throughput on Loihi 2

Fall-through 
mode

Pipelined mode

- Optimizes latency
- Process one sample as fast 

as possible

- Optimizes throughput
- Insert data each timestep
- Speed determined by 

slowest core / layer
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Streaming diagonal SSMs run extremely well on Loihi 2 
compared to an edge GPU (Jetson Orin Nano)

Parameters sMNIST psMNIST sCIFAR

CCNN [leader] 2M 99.72 98.84 93.08

S4D on Loihi 2 256k 99.20 96.16 84.13

Loihi 2 massively outperforms versus GPU 
when processing streaming data with S4D

(token-by-token inference)

Loihi 2 workloads were characterized on an Oheo Gulch system with N3C2-revision Loihi 2 chips running on NxCore 2.5.8 and alpha version of the NxKernel API with on-chip IO unthrottled sequencing
of input tokens. † GPU workloads were characterized on an NVIDIA Jetson Orin Nano 8GB 15W TDP running Jetpack 5.1.2, TensorRT 8.6.1, Torch-TensorRT 1.3.0. Energy values include CPU GPU CV
and SOC components as reported by jtop. ‡ Performance results are based on testing as of September 2024 and may not reflect all publicly available security updates . Results may vary.

Token-by-token processing Acc. Energy (mJ) Latency (ms) Throughput

Loihi 2 (fall-through) 84.13 0.016 0.066 15,260

Orin Nano GPU (recurrent) 86.53 16.11 4.98 201

Loihi advantage -2.4% 1,006x 75.5x 75.9x

Sample-by-sample processing Acc. Energy (mJ) Latency (ms) Throughput

Loihi 2 (pipelined) 84.13 10.36 12.74 80

Orin Nano GPU (conv. batch 1) 86.53 26.89 6.33 158

Orin Nano GPU (conv. batch 64) 86.53 0.961 8.476 7,550

GPU advantage 2.4% 0.39x / 11x 2x 2x / 94x

Convolutional SSM evaluation on GPU 
outperforms when all tokens per sample can 

be processed as a batch
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Recurrent networks with streaming tasks 
work well on Loihi 2

SDNN YOLO

S4D (streaming)

RF STFTS4D 
(batched)

(Better on Loihi)

(Worse on Loihi)
CPU (Intel Core/Xeon)

GPU (Nvidia)

Reference architecture

SDNN DNS

M. Davies et al, “Advancing Neuromorphic Computing With Loihi: A Survey of Results and Outlook,” Proc. IEEE, 2021. Results may vary.
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Outlook

- S4D is the foundation for SOTA state-space models such as Mamba, Vision Mamba, etc

- Use SSMs in real-world applications on neuromorphic hardware

- Advance to more modern versions of SSMs such as S5:

Pierro, Alessandro, et al. "Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity." arXiv preprint 
arXiv:2502.01330 (2025).

- Go alternative routes such as MatMul-Free LLMs

Abreu, Steven, et al. "Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2." First Workshop on Scalable Optimization for 
Efficient and Adaptive Foundation Models.
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Legal Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.  See backup for 
configuration details.  No product or component can be absolutely secure. 

Your costs and results may vary. 

Results have been estimated or simulated.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data.  You should consult other sources to evaluate accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular 
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands may 
be claimed as the property of others.  
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