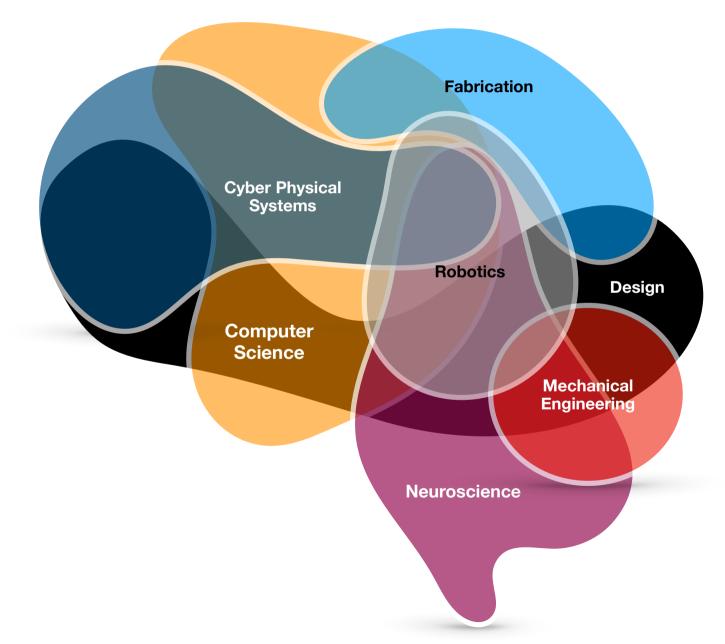
TUTORIAL Autonomous Driving with Neuromorphic Controllers

Elishai Ezra Tsur The Open University of Israel



- The largest university in Israel with more then 46,200 students
- 1 in every 5 students in Israel is a student of the Open University
- 60 learning centres across Israel. Main Campus in Raanana
- State of the art M.Sc program in Computer Science
- Home for <u>NBEL-lab.com</u>

Is funded by:

מרכז לשיקום ילדים ונוער

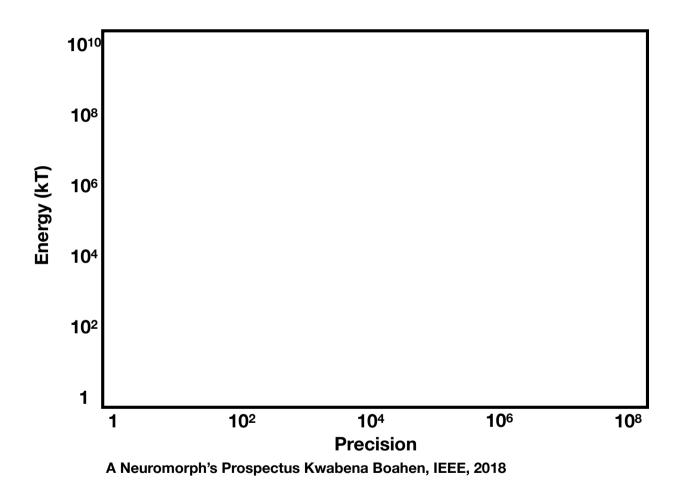
HERZOG MEDICAL CENTER

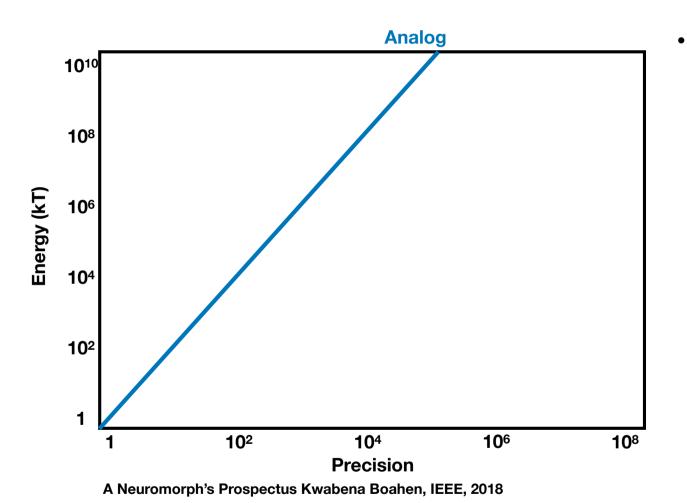
Follow the code examples!

http://bit.ly/426swoN

Tutorial Outline

- Why Neuromorphic Control, Autonomous Behavior, Driving
- What PID, Pure pursuit, Stanley Controller, MPC
- How Neural Engineering Framework, Nengo, Airsim, Carla
- **Learn Resources**

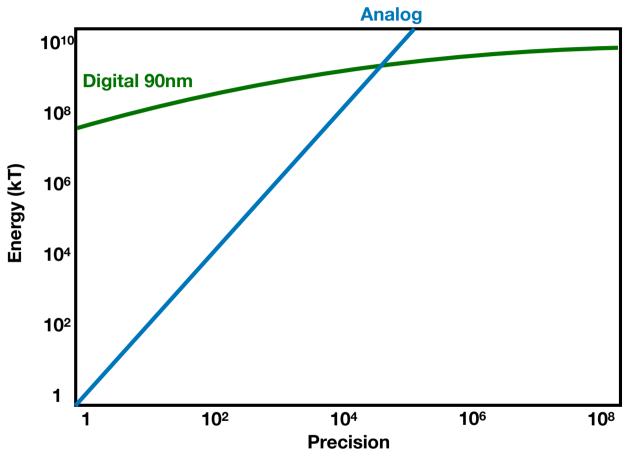




 Energy consumed to generate an analog voltage signal scales quadratically with its amplitude.

•

٠



A Neuromorph's Prospectus Kwabena Boahen, IEEE, 2018

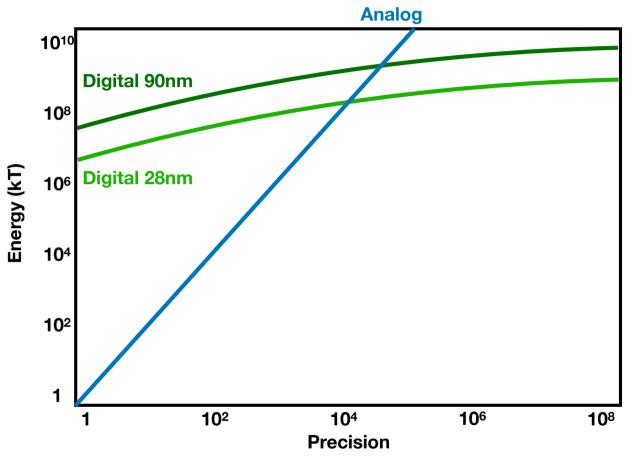
Energy consumed to generate

an analog voltage signal scales

quadratically with its amplitude.

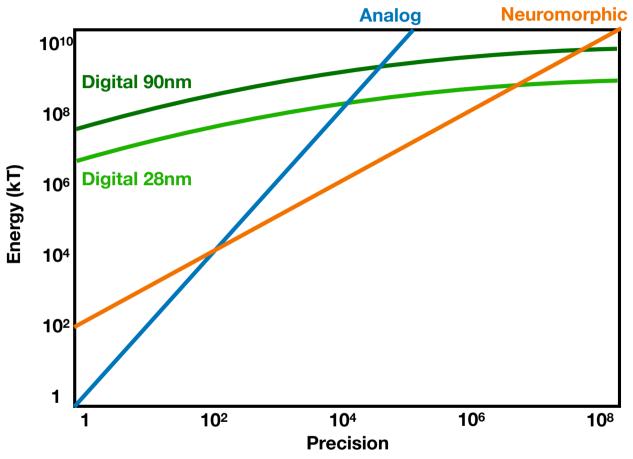
Digital signals scales

logarithmically

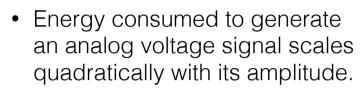


A Neuromorph's Prospectus Kwabena Boahen, IEEE, 2018

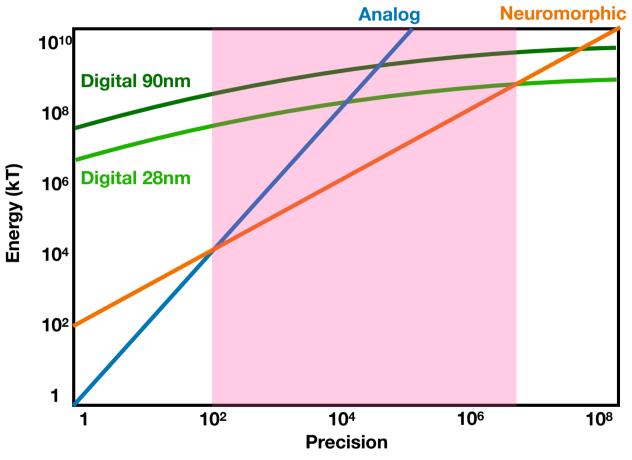
- Energy consumed to generate an analog voltage signal scales quadratically with its amplitude.
- Digital signals scales logarithmically
- The crossover point has migrated to the left over the years (with miniaturization) favoring digital over analog computation for more and more applications



A Neuromorph's Prospectus Kwabena Boahen, IEEE, 2018



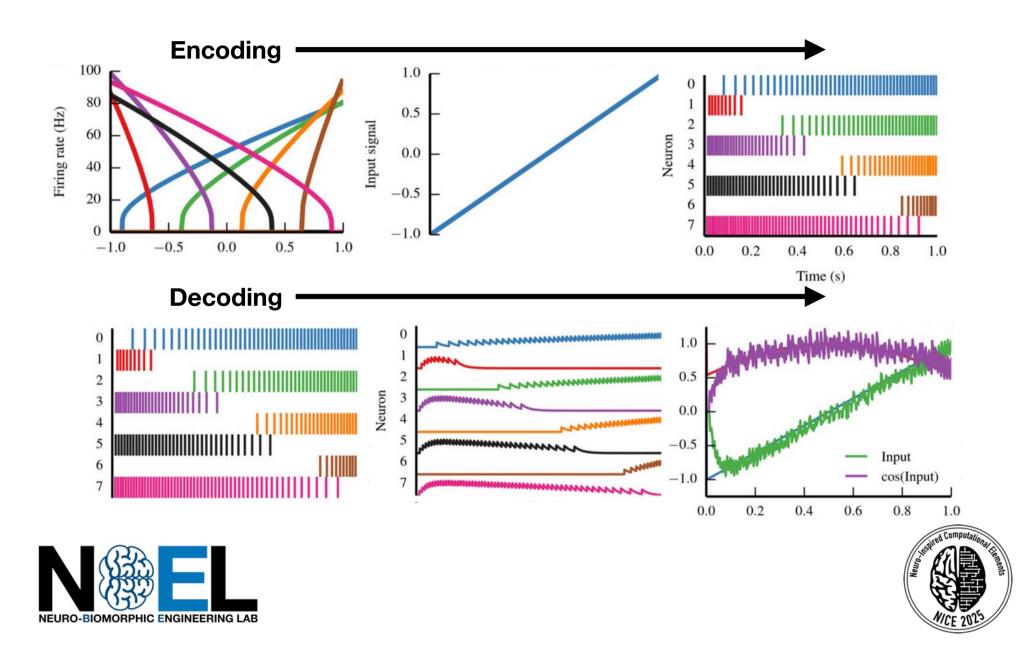
- Digital signals scales logarithmically
- The crossover point has migrated to the left over the years (with miniaturization) favoring digital over analog computation for more and more applications
- Most neuromorphic architectures aim to mix analog-digital design



A Neuromorph's Prospectus Kwabena Boahen, IEEE, 2018

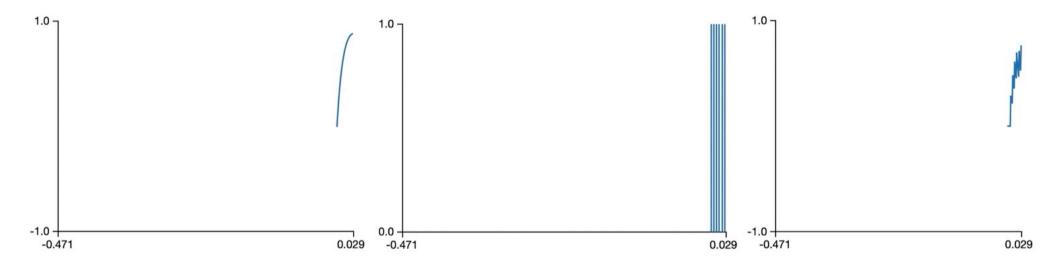
- Energy consumed to generate an analog voltage signal scales quadratically with its amplitude.
- Digital signals scales logarithmically
- The crossover point has migrated to the left over the years (with miniaturization) favoring digital over analog computation for more and more applications
- Most neuromorphic architectures aim to mix analog-digital design to achieve best performance across five-decade precision range.

In the Neural Engineering Framework



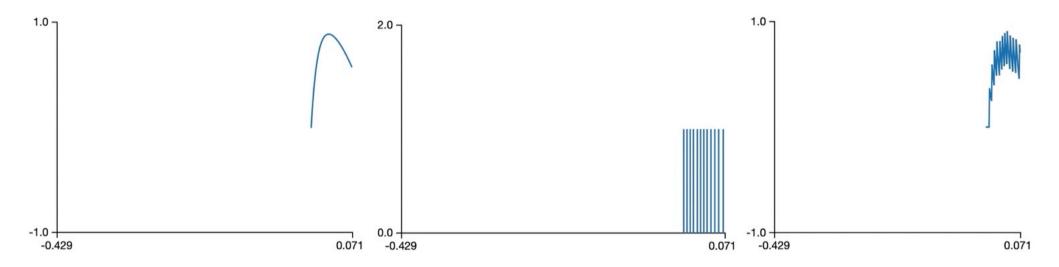
Computing with Spiking Neural Networks Representation

Encoding-Decoding with 1 neuron:



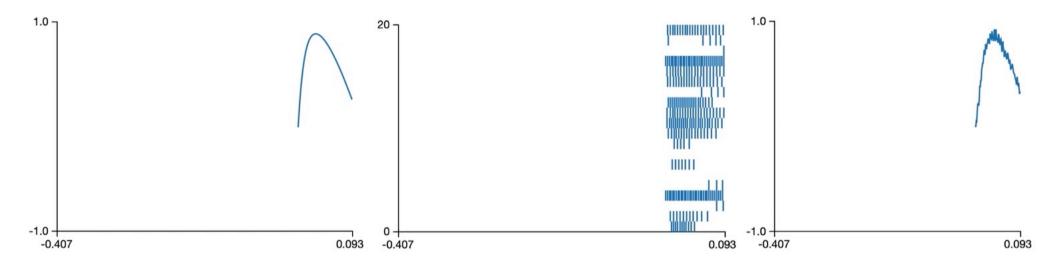
Computing with Spiking Neural Networks Representation

Encoding-Decoding with 2 neurons:



Computing with Spiking Neural Networks Representation

Encoding-Decoding with 20 neurons:



Live Examples

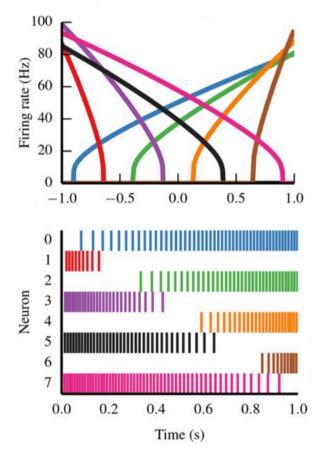
Representation, transformation and integration

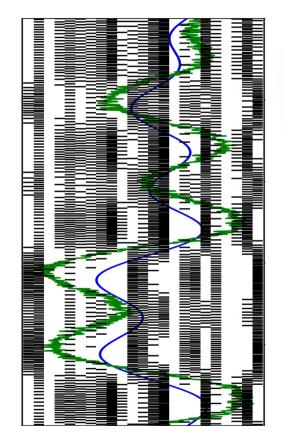
Neural Engineering Framework

Computing with Spiking Neural Networks

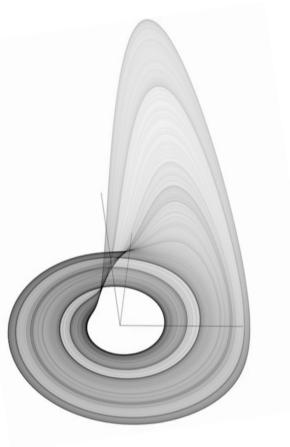
Representation

Transformation





Dynamics



To learn more...

NEUROMORPHIC ENGINEERING

The Scientist's, Algorithms Designer's and Computer Architect's Perspectives on Brain-Inspired Computing

The brain is not a glorified digital computer. It does not store information in registers, and it does not mathematically transform mental representations to establish perception or behavior. The brain cannot be downloaded to a computer to provide immortality, nor can it destroy the world by having its emerged consciousness traveling in cyberspace. However, studying the brain's core computation architecture can inspire scientists, computer architects, and algorithm designers to think fundamentally differently about their craft.

Neuromorphic engineers have the ultimate goal of realizing machines with some aspects of cognitive intelligence. They aspire to design computing architectures that could surpass existing digital von Neumann-based computing architectures' performance. In that sense, brain research bears the promise of a new computing paradigm. As part of a complete cognitive hardware and software ecosystem, neuromorphic engineering opens new frontiers for neuro-robotics, artificial intelligence, and supercomputing applications.

The book presents neuromorphic engineering from three perspectives: the scientist, the computer architect, and the algorithm designer. It zooms in and out of the different disciplines, allowing readers with diverse backgrounds to understand and appreciate the field. Overall, the book covers the basics of neuronal modeling, neuromorphic circuits, neural architectures, event-based communication, and the neural engineering framework.

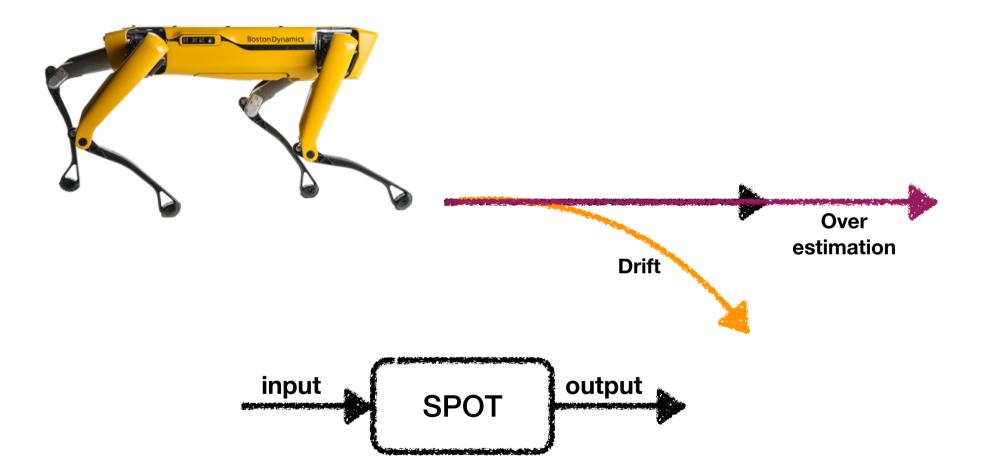
TSUR

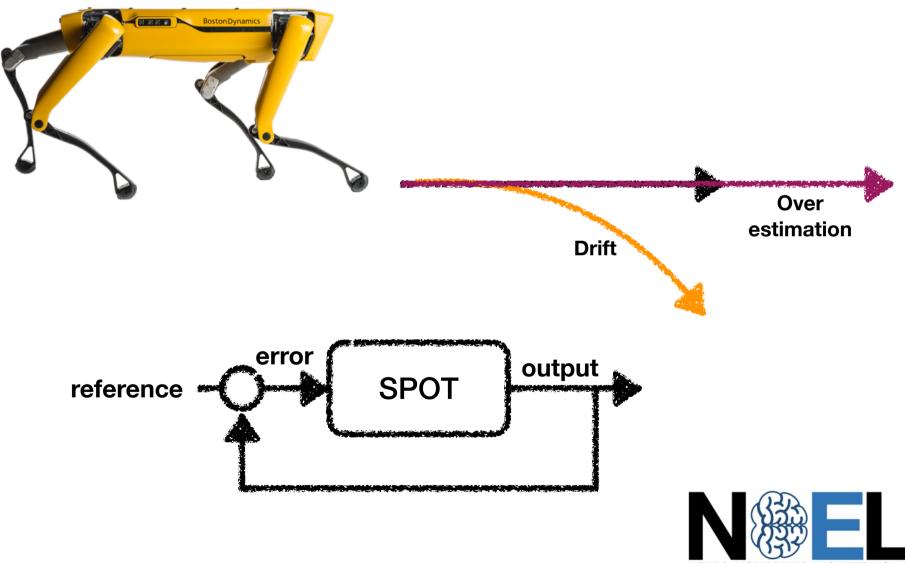
NEUROMORPHIC ENGINEERING

The Scientist's, Algorithms Designer's and Computer Architect's Perspectives on Brain-Inspired Computing

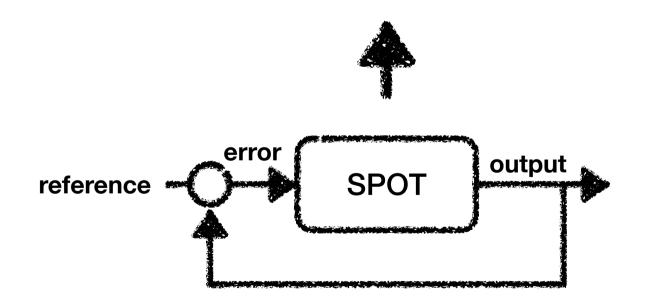
Elishai Ezra Tsur

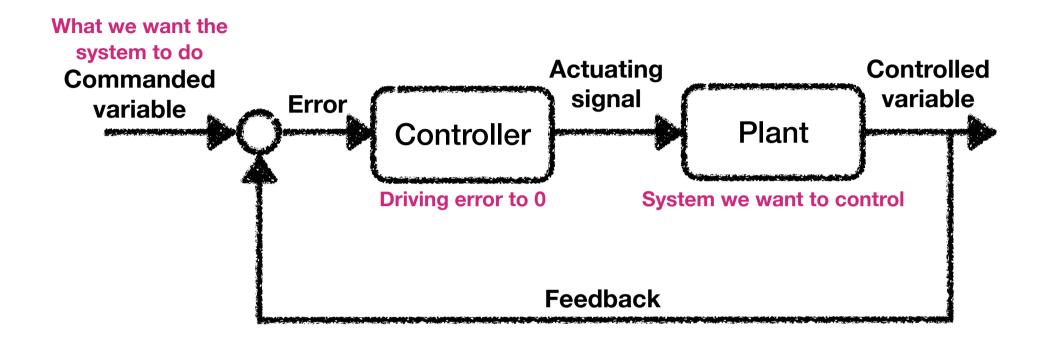
Calculate time based on movement velocity and distance from goal

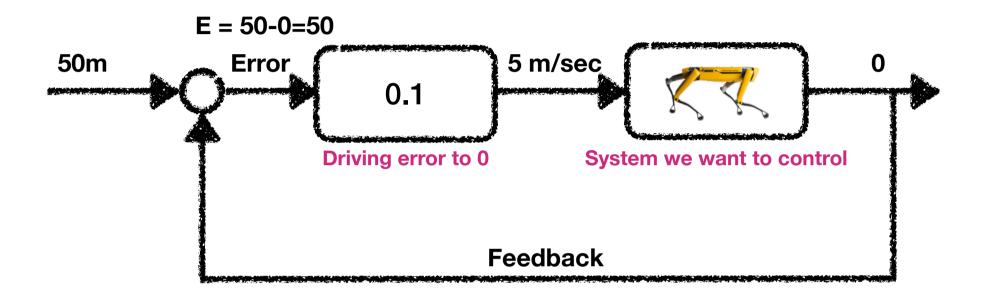


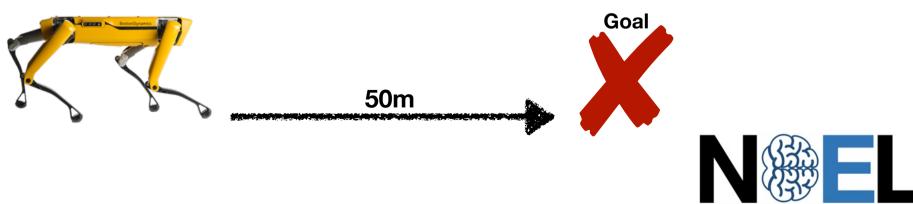


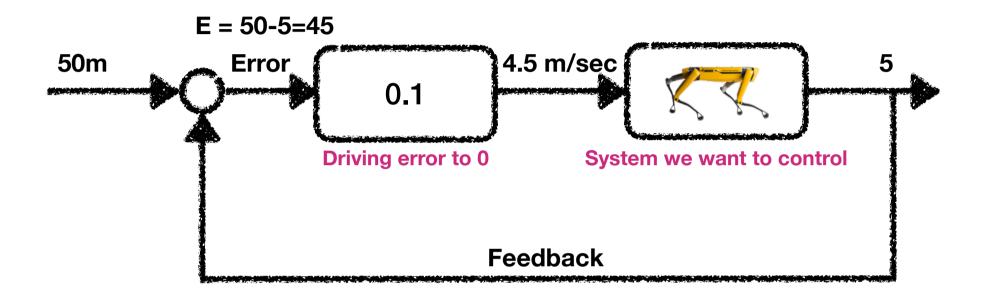
Integration of **sensing** and **computation**

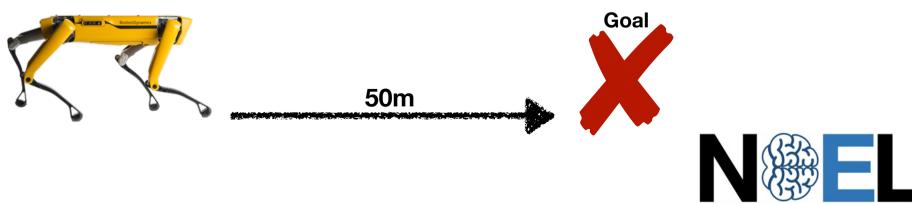


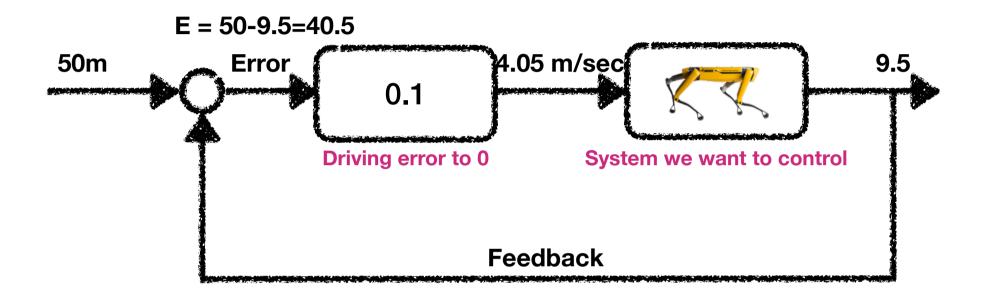


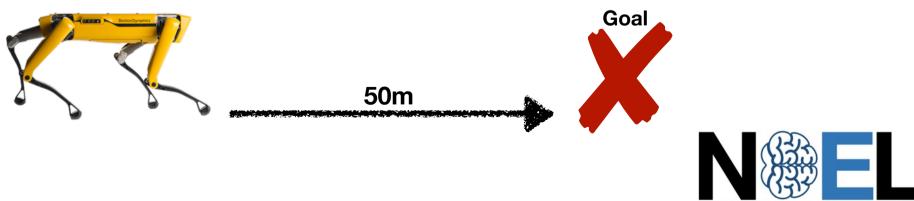


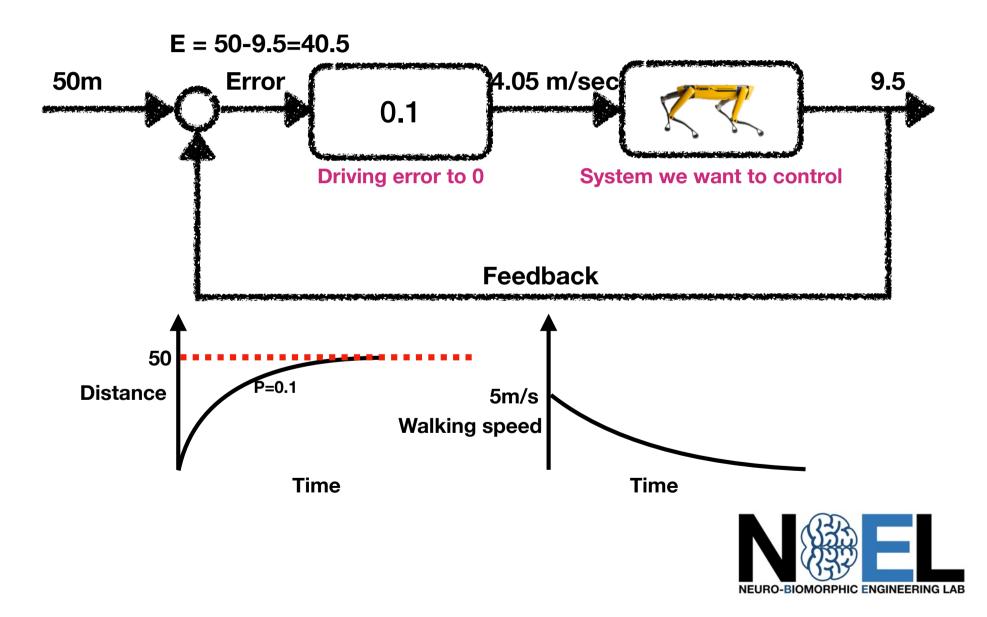


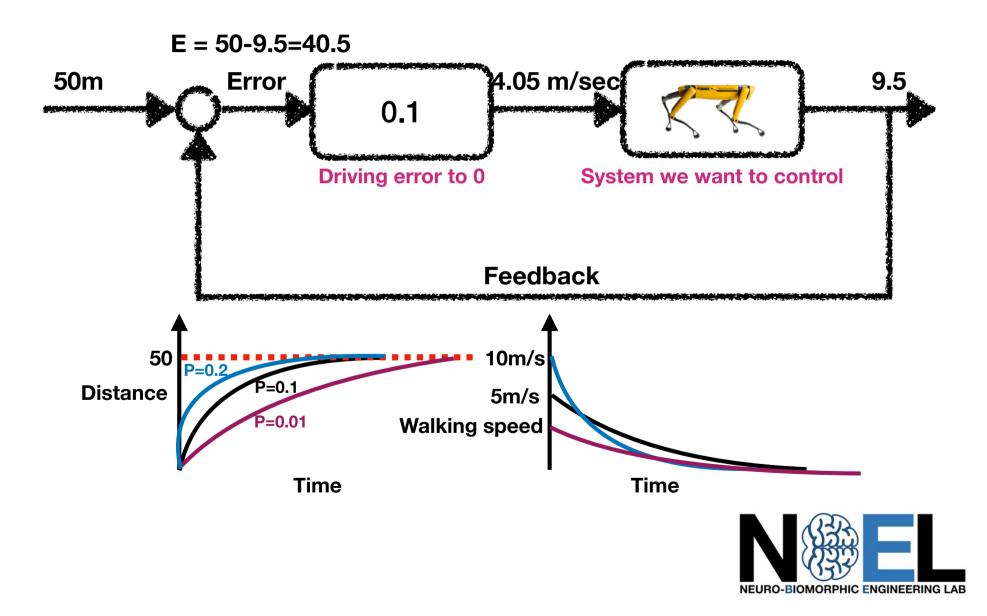


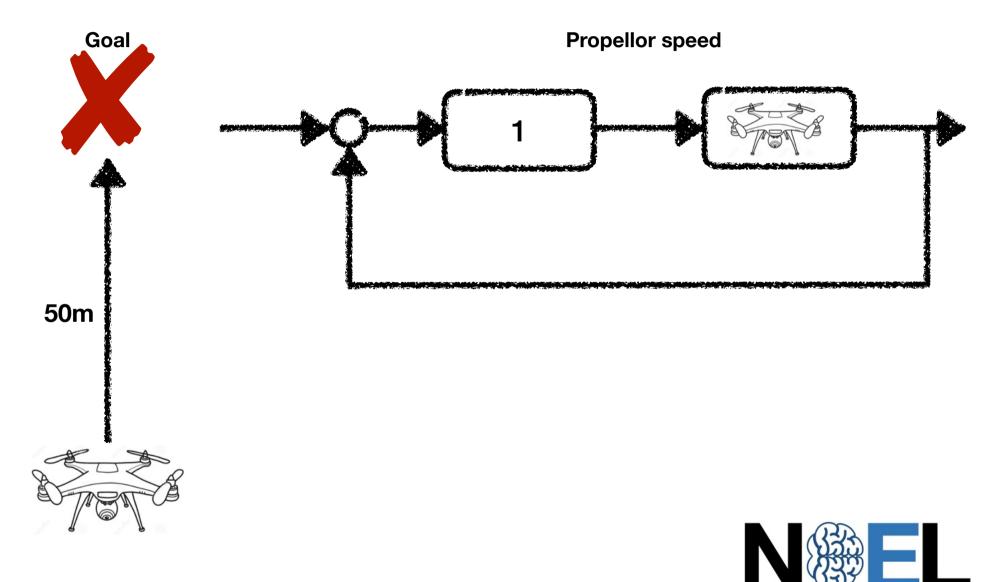


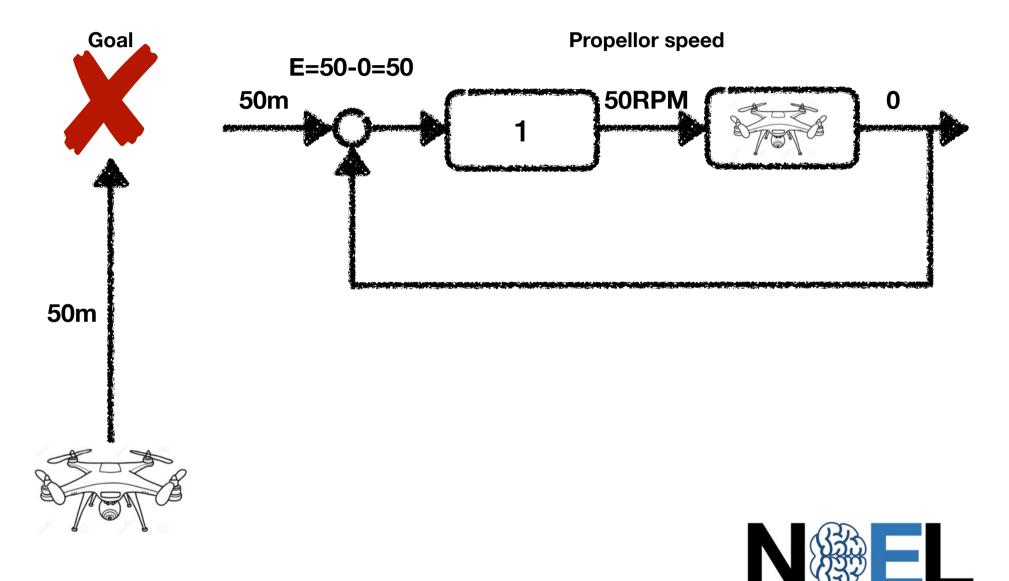


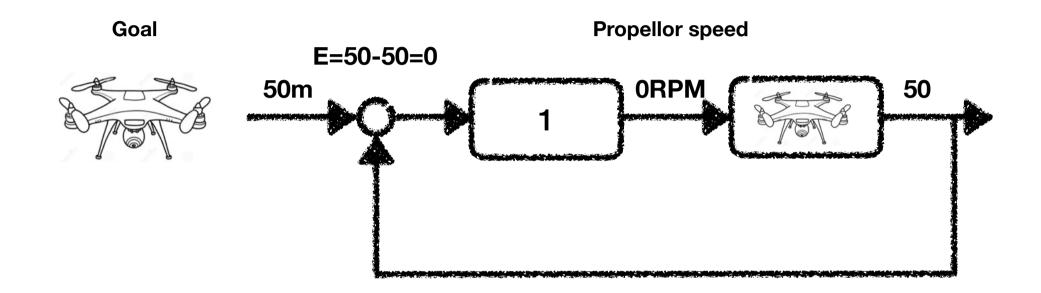


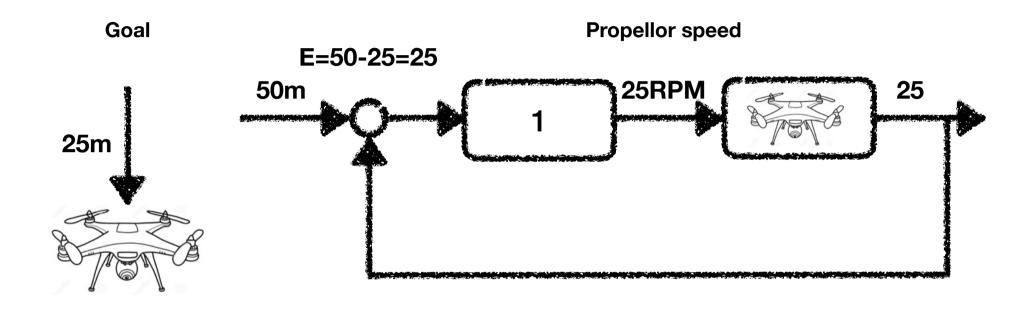


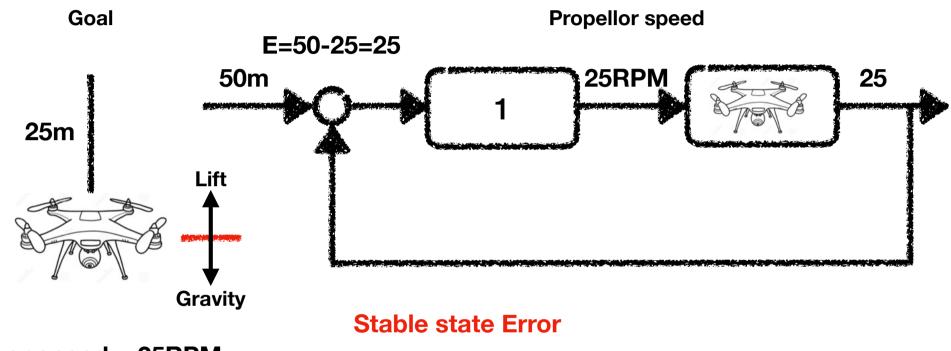




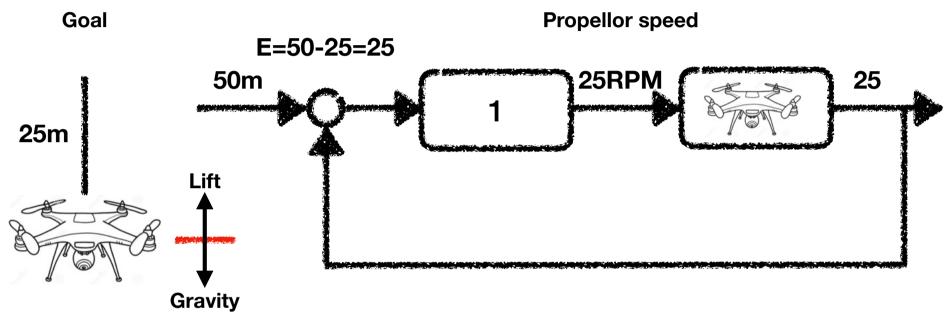








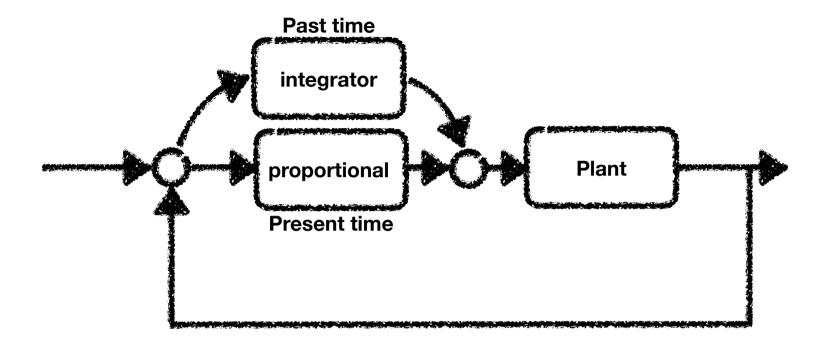
Hover speed = 25RPM

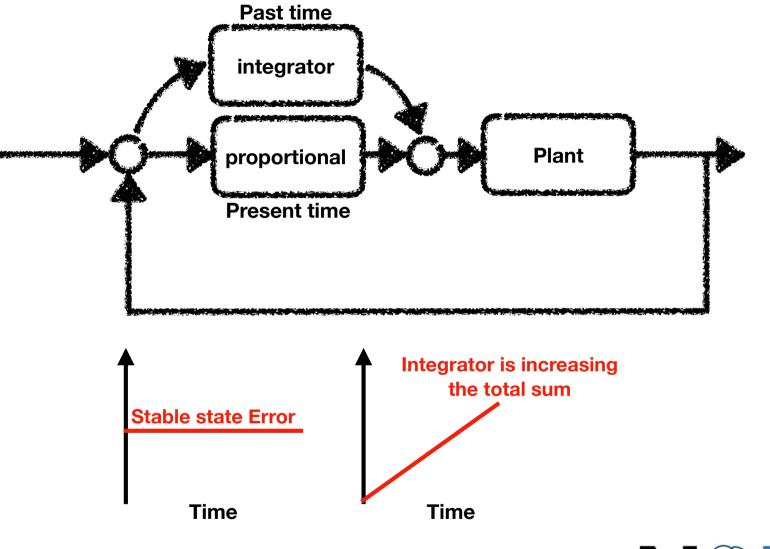


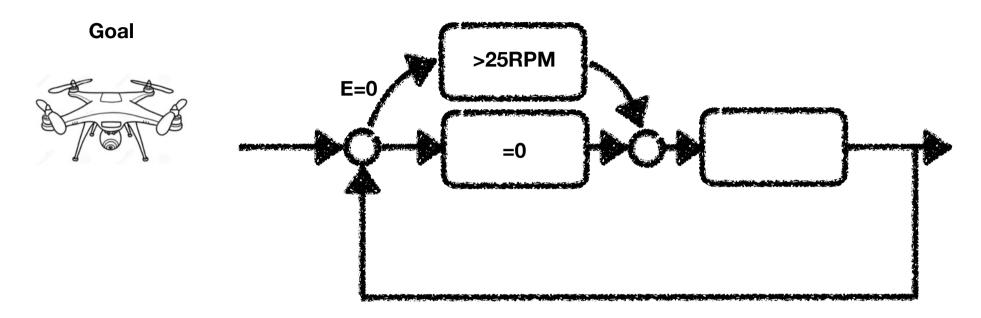
Stable state Error

Hover speed = 25RPM

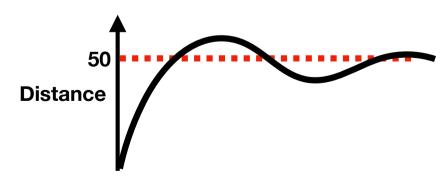
P=0.5, 50. * 0.5=25 RPM -> hover at 50. = Error P=0.6, 41.6 * 0.6=25 RPM -> hover at 41.6 = Error P=1. , 25. * 1. =25 RPM -> hover at 25 = Error P=2. , 12.5.* 2. =25 RPM -> hover at 12.5 = Error P=10 , 2.5.* 10. =25 RPM -> hover at 2.5 = Error

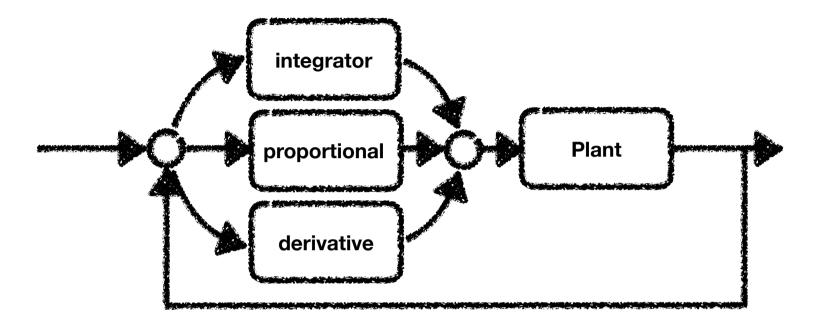




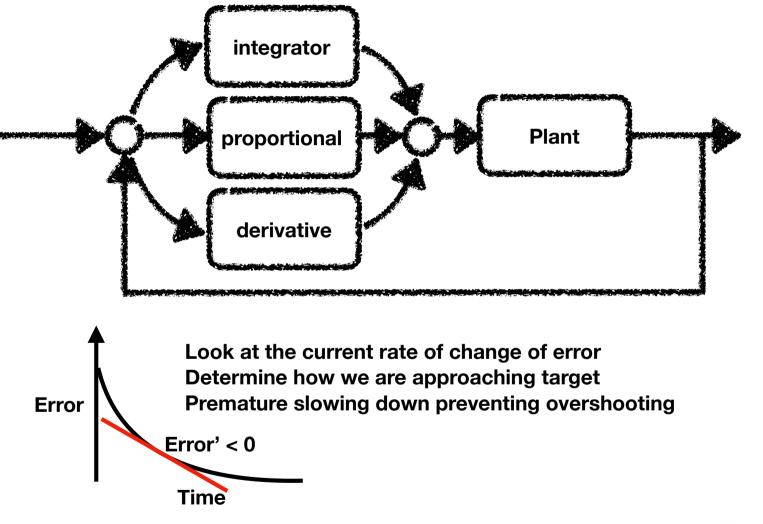


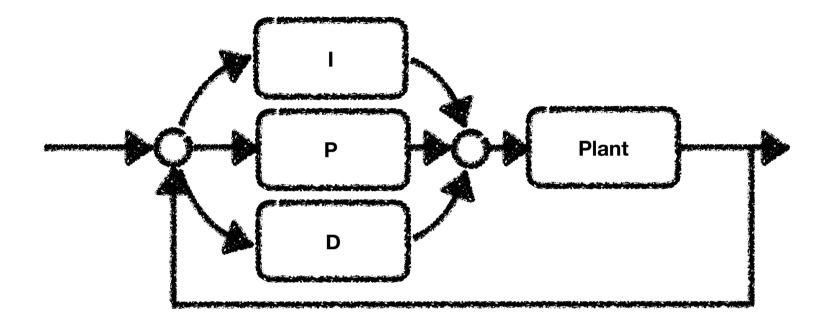
During target reach the I component might get higher than 25RPM, Inducing an overshoot

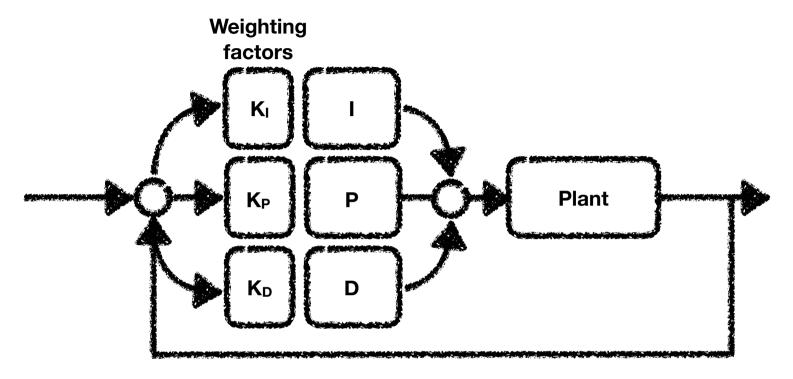


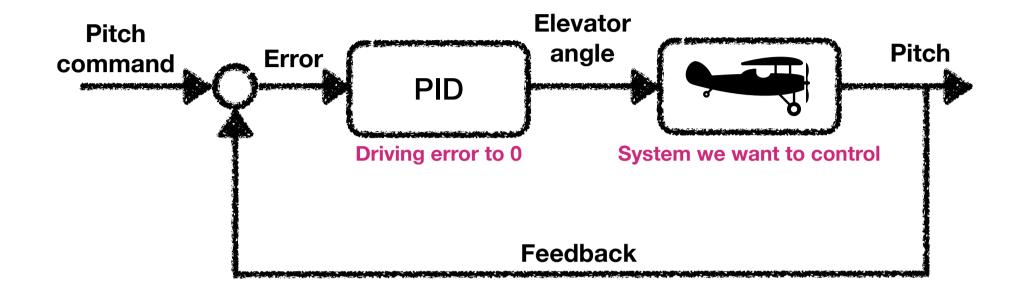


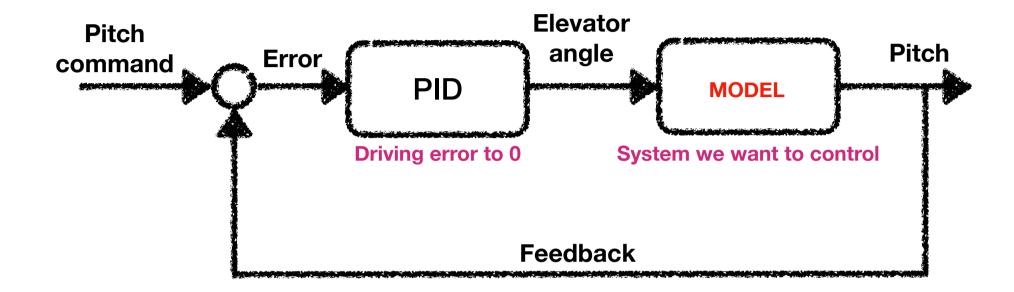
Accounting for the future: how fast the error is growing and shrinking

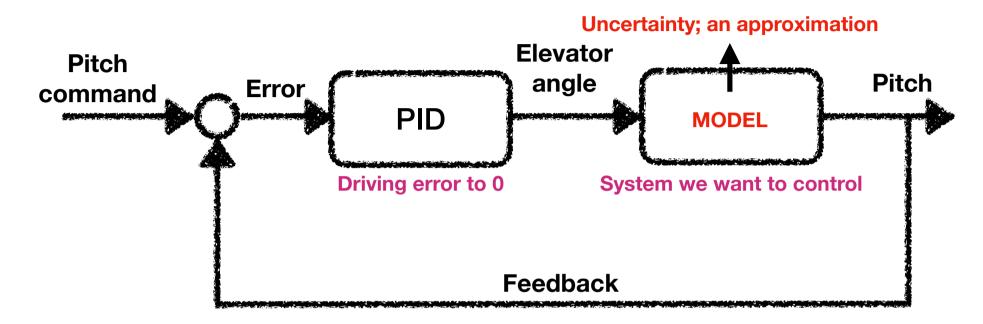






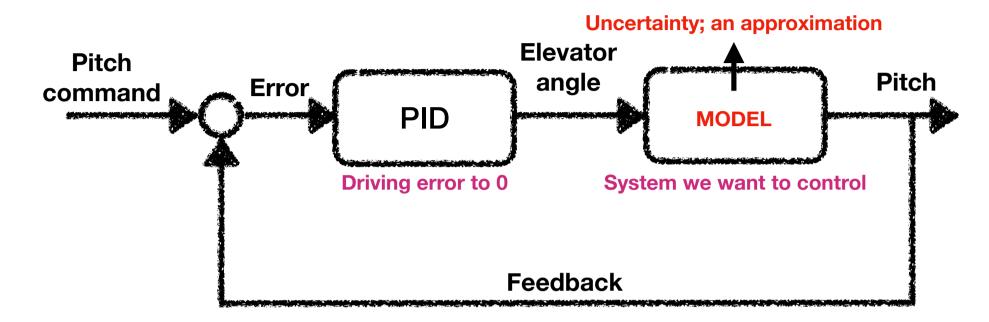






Robust control

Designing a system which can handle uncertainty Adding margins into the design: how much uncertainty can the system handle? guarantees that if the changes are within given bounds the control law need not be changed



Robust control

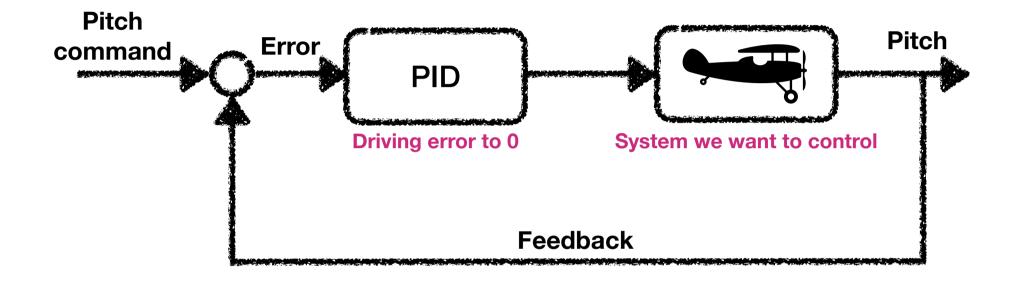
Designing a system which can handle uncertainty

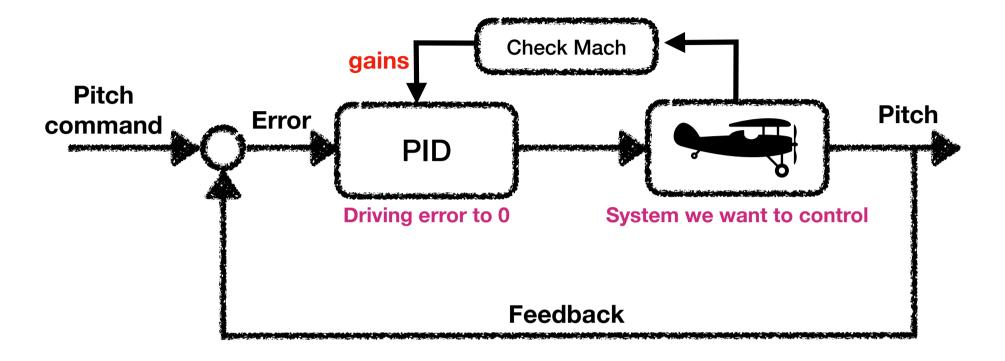
Adding merging into the design: how much uncertainty can the system handle?guarantees that if the changes are within given bounds the control law need not be changed

Adaptive control

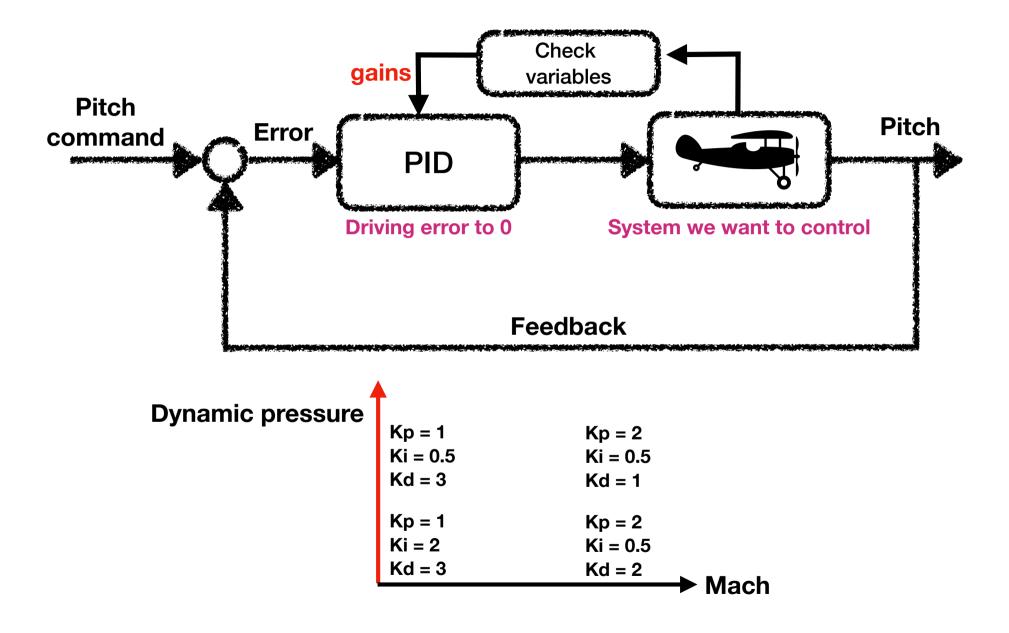
The capability of the system to modify its own operation to achieve the best possible mode of operation.

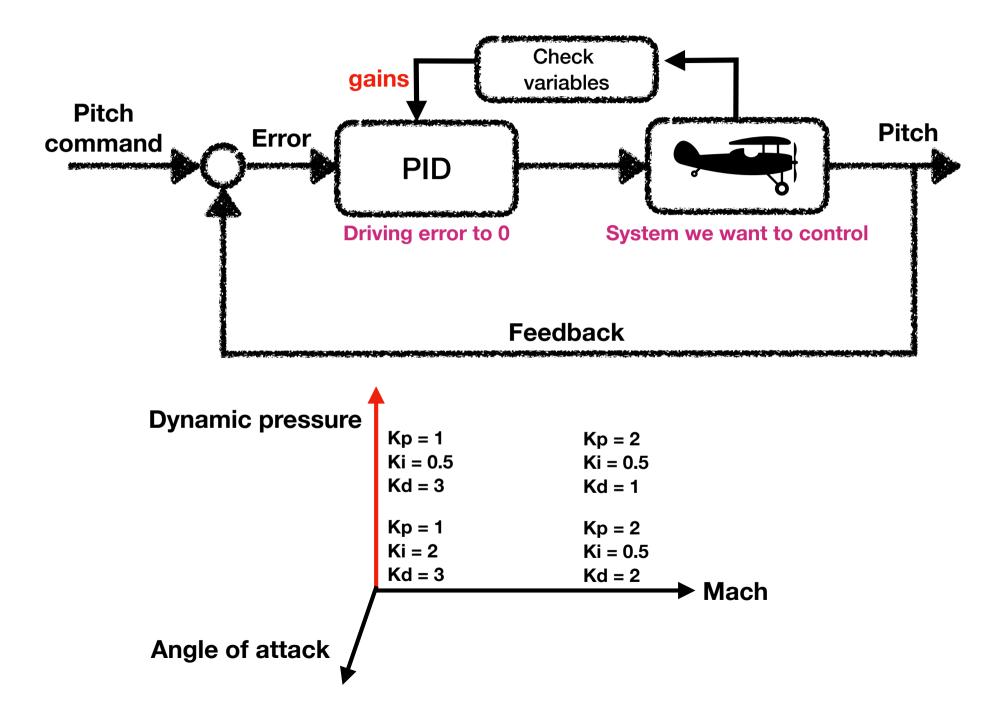
Adaptive control is different from robust control in that it does not need *a priori* information about the bounds on these uncertain or time-varying parameters

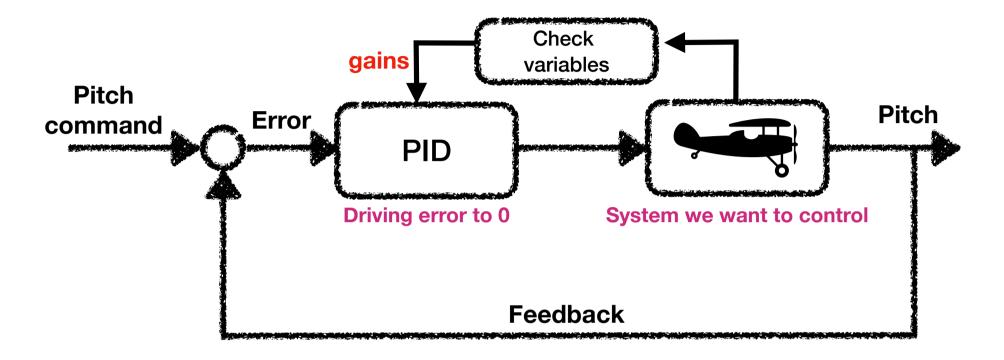




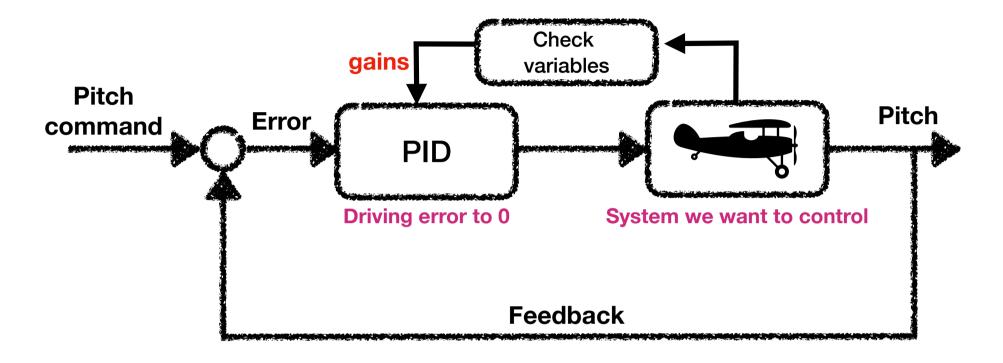
Set of gains Mach number 0.3: Kp = 1, Ki = 2, Kd = 3Mach number 0.9: Kp = 2, Ki = 0.5, Kd = 2



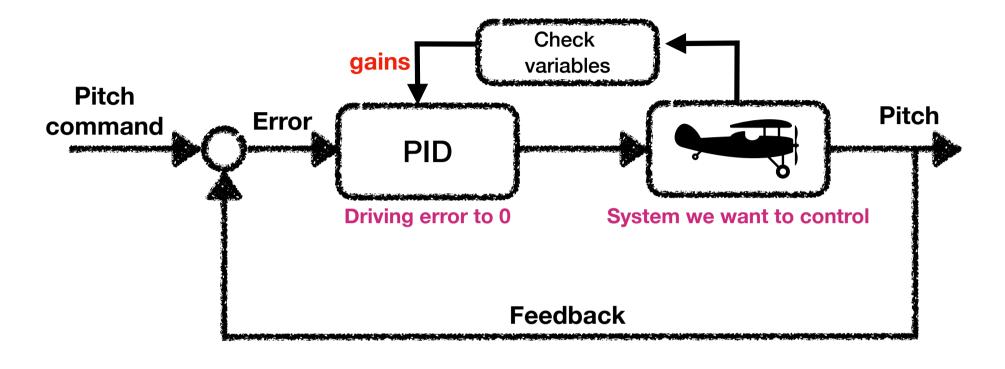




MANY gain sets Storage and search Hard in corner cases



MANY gain sets Storage and search — Many innovations here.... Hard in corner cases

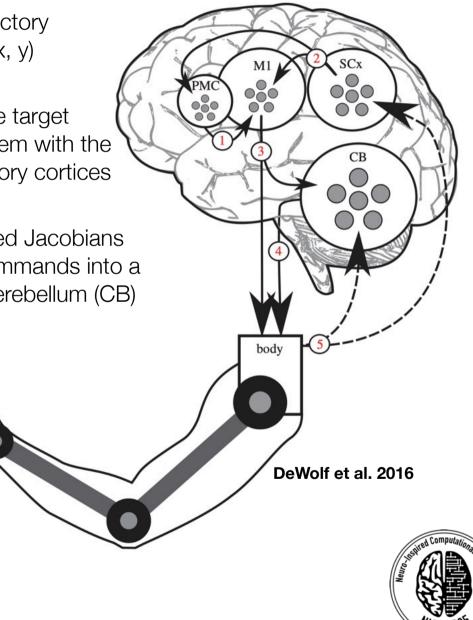


Live Examples

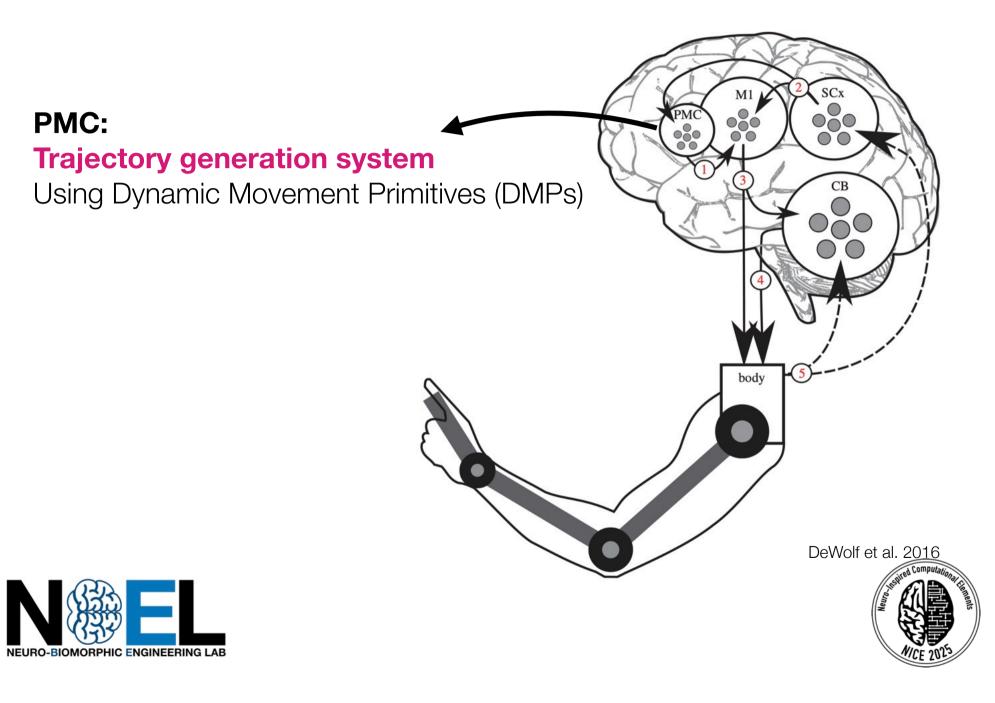
Neuromorphic PID

Adaptive Control

- The premotor cortex (PMC) generates a trajectory for the system to follow with a sequence of (x, y) coordinates.
- The primary motor cortex (M1) receives these target positions (1) from the PMC and compares them with the current system state, received from the sensory cortices (SCx), through (2).
- M1 combines this signal with locally calculated Jacobians to transform the desired hand movement commands into a low-level signal that is sent to the arm and cerebellum (CB) along (3).
- The CB projects an adaptive signal to the body along (4) that compensates for velocity and movement errors. Visual and proprioceptive feedback projects from the body along (5) to the CB and SCx.

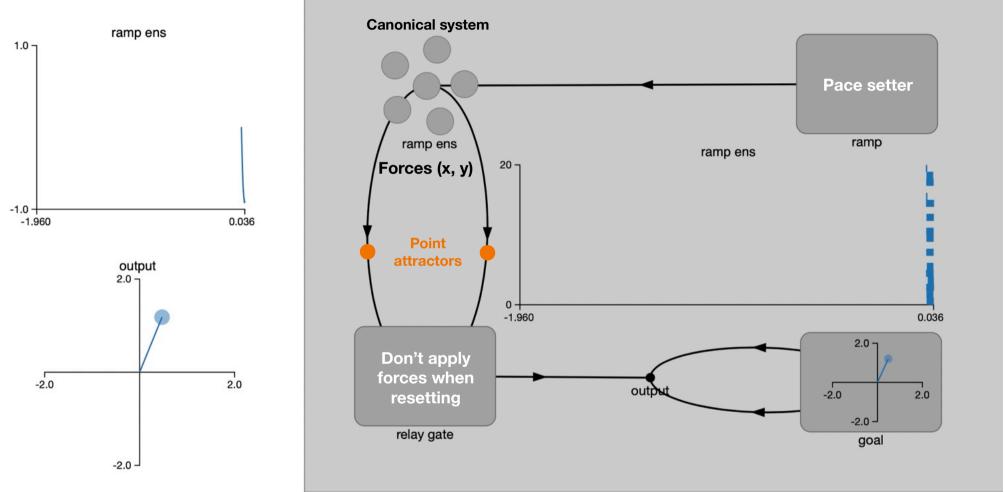


Adaptive Control



Dynamic movement primitives (DMPs)

In Spiking Neurons

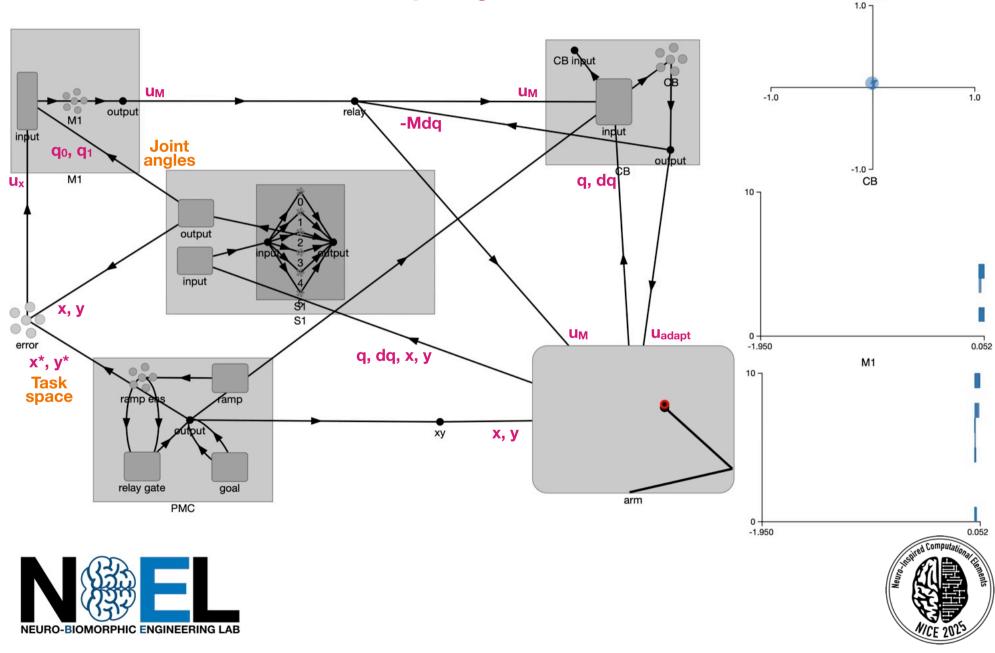


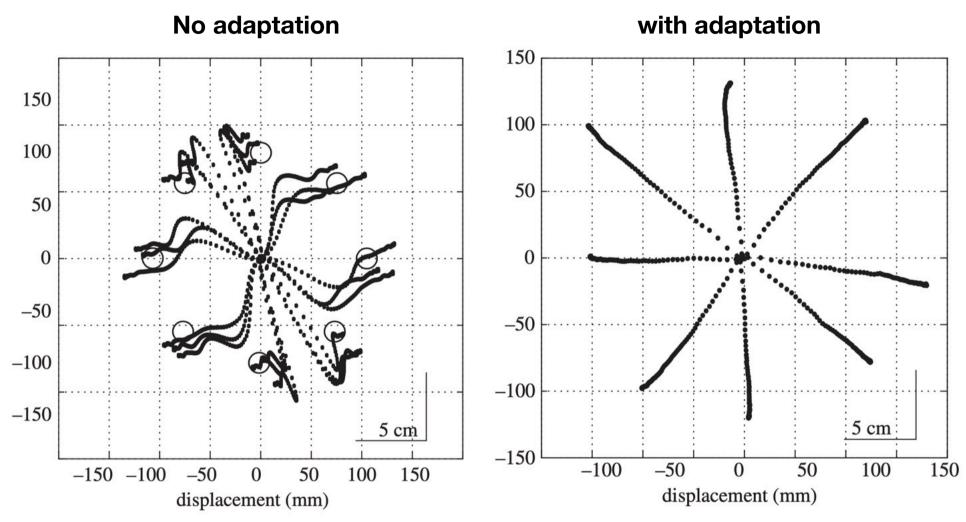
PMC

Dynamic movement primitives (DMPs)

error

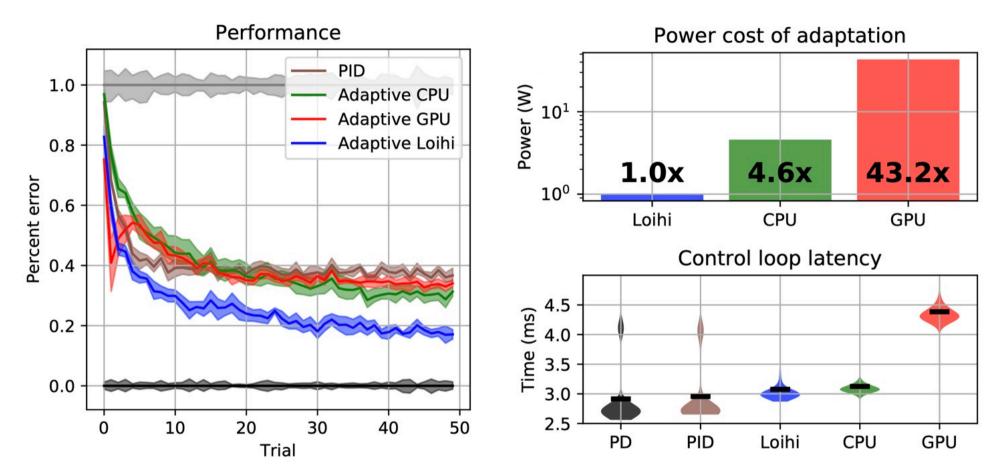
In Spiking Neurons





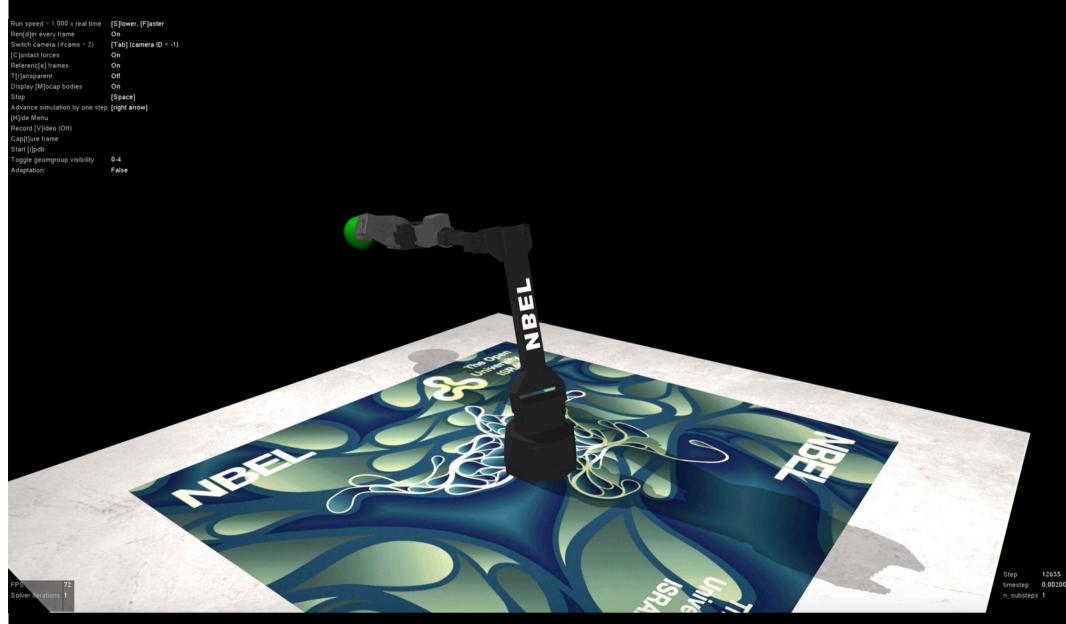
DeWolf et al. 2016

Adaptive Control

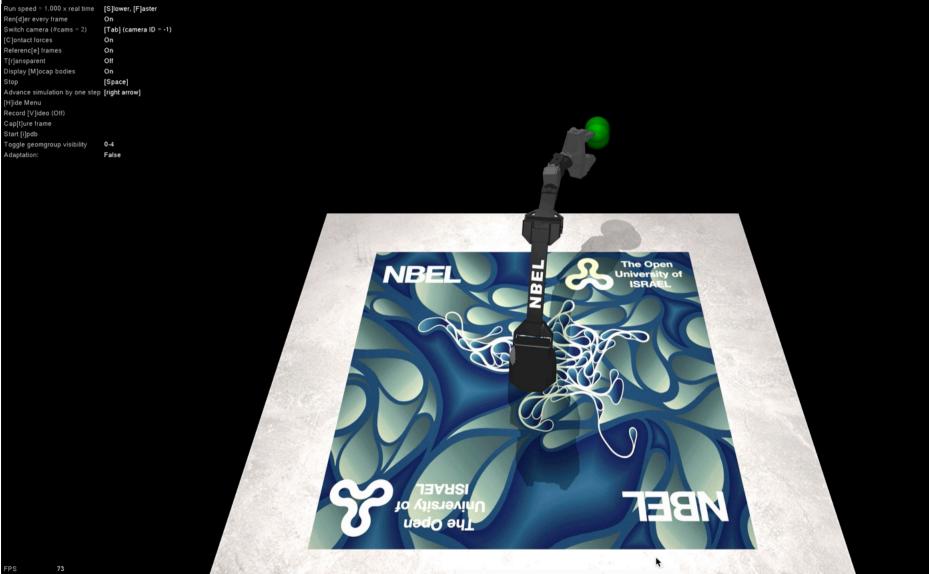


DeWolf et al. 2020

In Simulation No External Force



In Simulation With External Force

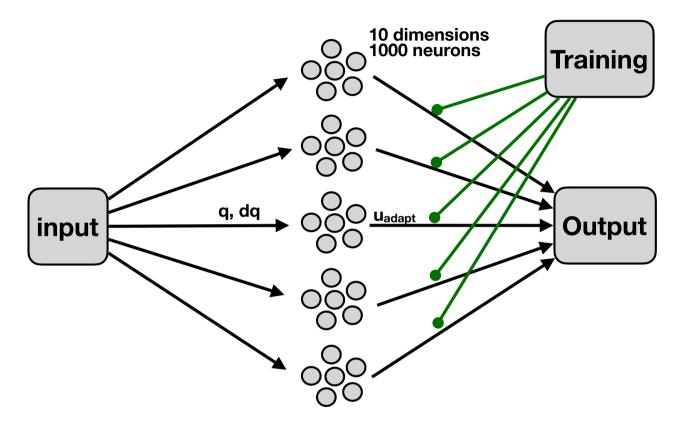


timestep 0.00200 n_substeps 1

Stop

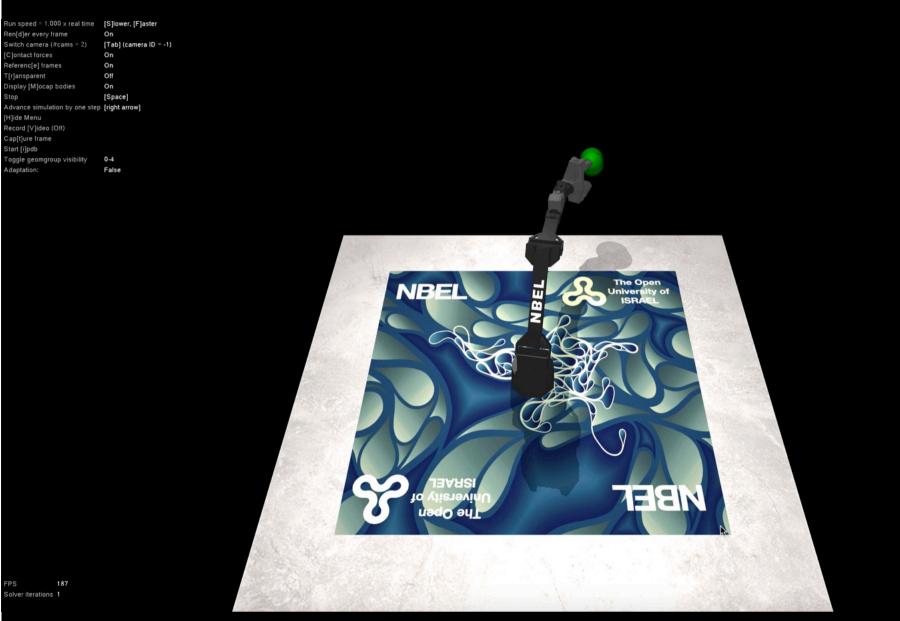
On-line Learning

Adaptive control is held neuromorphically



Representing values in 10 dimensions is not trivial. Tuning curves has to be (very) carefully defined. Values should be scaled experimentally.

In Simulation With External Force and Adaptation



Step 394 timestep 0.00200 n_substeps 1 **frontiers** Frontiers in Neuroscience

TYPE Original Research PUBLISHED 29 September 2022 DOI 10.3389/fnins.2022.1007736

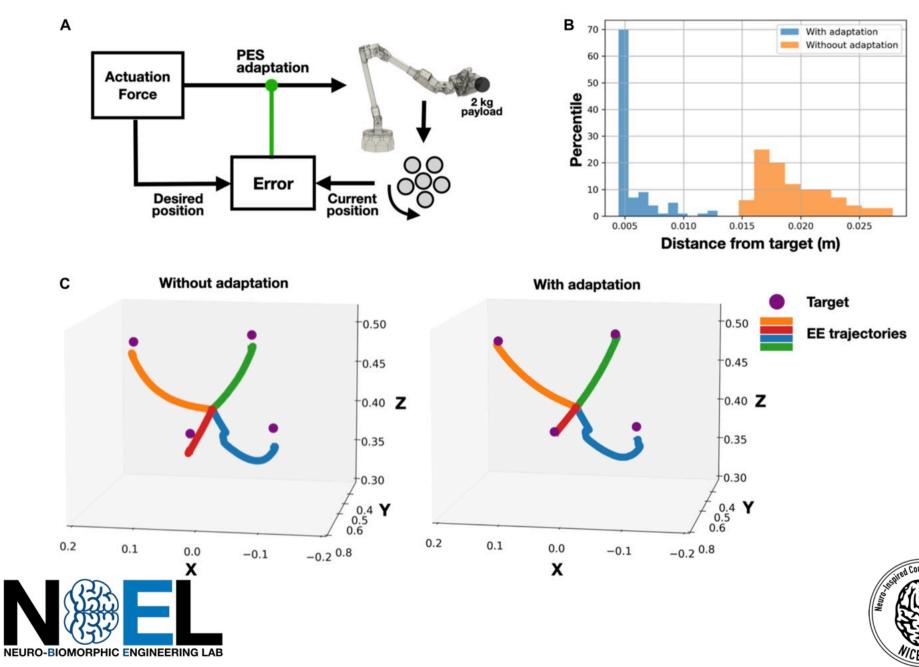
Adaptive control of a wheelchair mounted robotic arm with neuromorphically integrated velocity readings and online-learning

Michael Ehrlich^{1†}, Yuval Zaidel^{1†}, Patrice L. Weiss^{2,3}, Arie Melamed Yekel³, Naomi Gefen³, Lazar Supic⁴ and Elishai Ezra Tsur^{1*}

¹Neuro-Biomorphic Engineering Lab, Open University of Israel, Ra'anana, Israel, ²Department of Occupational Therapy, University of Haifa, Haifa, Israel, ³The Helmsley Pediatric & Adolescent Rehabilitation Research Center, ALYN Hospital, Jerusalem, Israel, ⁴Accenture Labs, San Francisco, CA, United States

Clinical Usability Study

Adaptive Control



רשות החדשנות Content Content

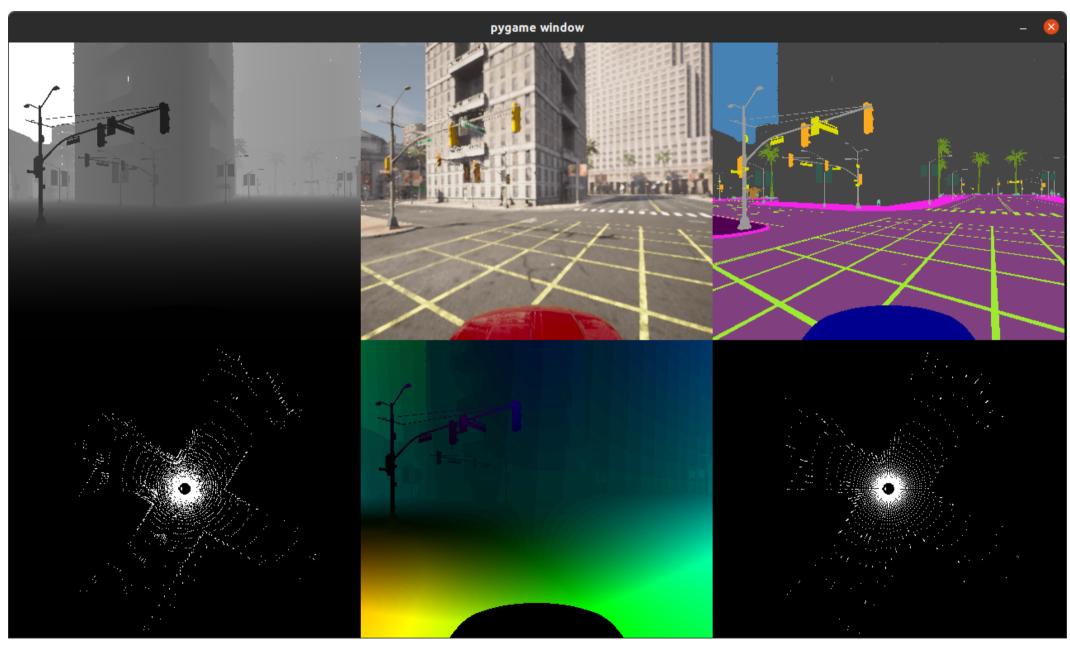
Objective: Zero-Shot Trajectory Optimization

Simulation Frameworks

AirSim (microsoft)

Simulation Frameworks

CARLA



Bioinspiration & Biomimetics

PAPER

RECEIVED 6 September 2021

ACCEPTED FOR PUBLICATION 22 September 2021

PUBLISHED

21 October 2021

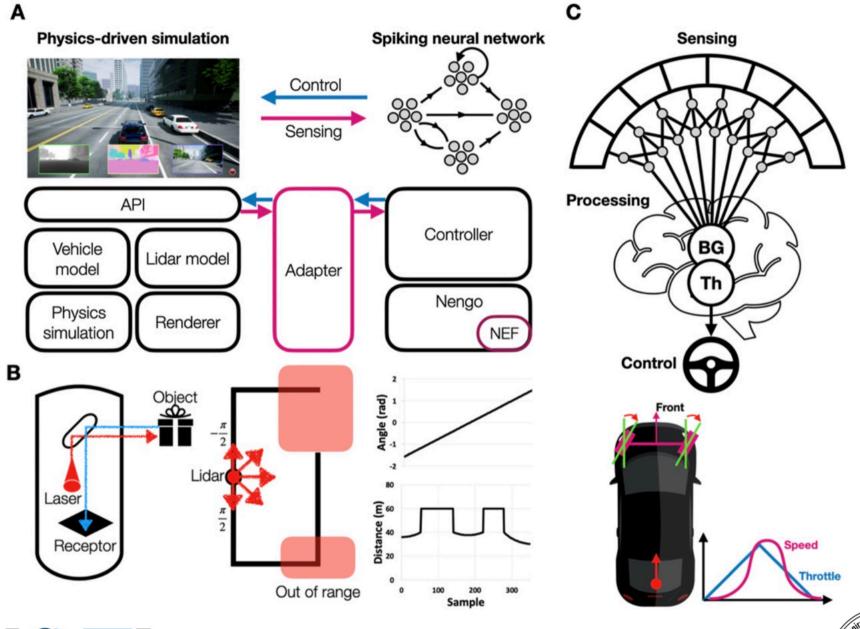
LiDAR-driven spiking neural network for collision avoidance in autonomous driving

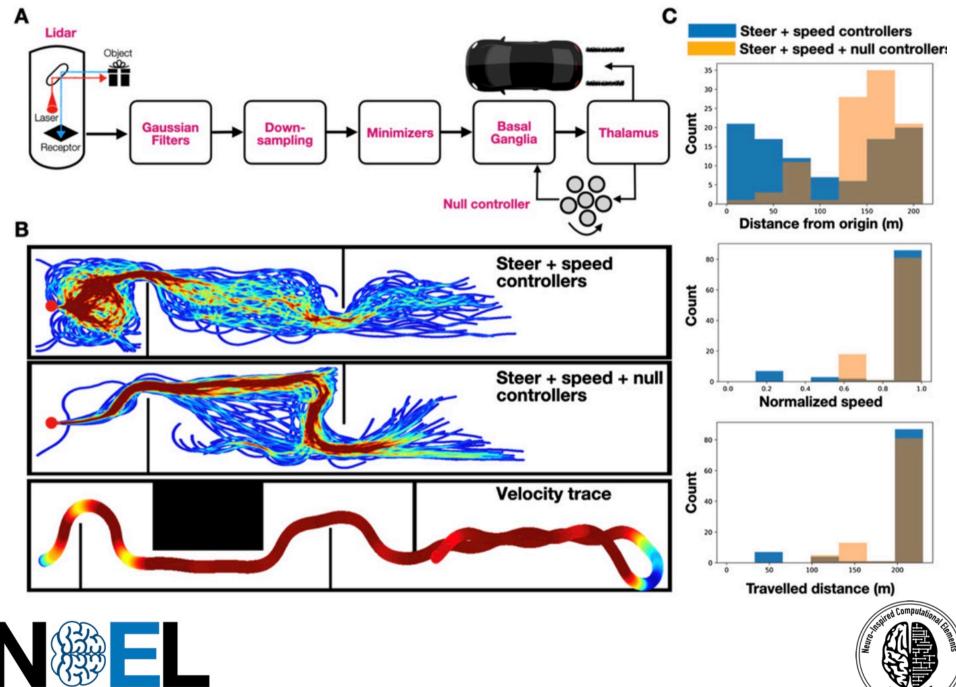
Albert Shalumov, Raz Halaly and Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab at the Open University of Israel, Ra'anana, Israel * Author to whom any correspondence should be addressed.

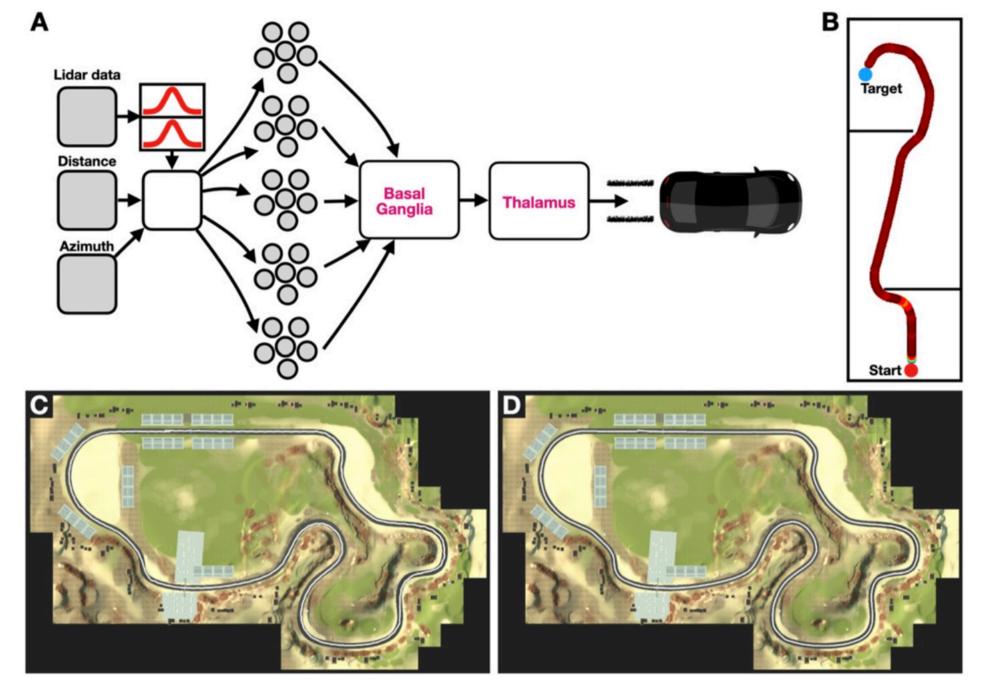
E-mail: elishai@nbel-lab.com

Keywords: neuromorphic control, neuromorphic engineering, neural engineering framework, autonomous driving, PID control, online learning

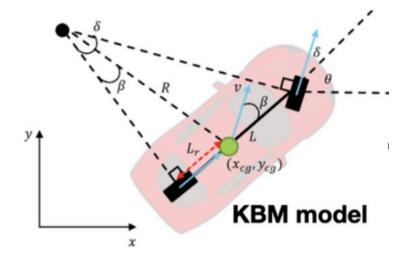




NEURO-BIOMORPHIC ENGINEERING LAB



Kinematic Bicycle Model



$$\theta_t = \tan \left(\frac{\theta_{\cos_t}}{\theta_{\sin_t}} \right)$$

$$\dot{x} = v_t \cos \left(\frac{\theta_t}{\theta_t} + \beta \right)$$

$$\dot{y} = v_t \sin \left(\frac{\theta_t}{\theta_t} + \beta \right)$$

$$\dot{\theta} = v_t \tan \left(\delta_t \right) \cos \left(\beta \right) / L$$

$$\dot{v}_x = \phi_t \theta_{\cos_t}$$

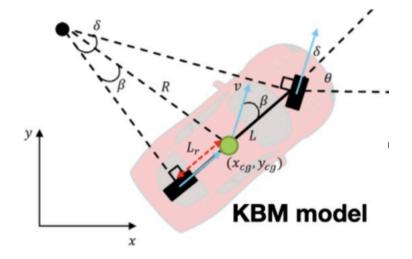
$$\dot{v}_y = \phi_t \theta_{\sin_t}$$

$$\dot{a}_x = 0$$

$$\dot{a}_y = 0$$

$$\dot{v}_r = 0$$

Kinematic Bicycle Model



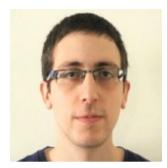
$$\begin{aligned} \theta_t &= \tan\left(\theta_{\cos_t}/\theta_{\sin_t}\right) & x_t \\ \dot{x} &= v_t \cos\left(\theta_t + \beta\right) & y_t \\ \dot{y} &= v_t \sin\left(\theta_t + \beta\right) & \theta_c \\ \dot{\theta} &= v_t \tan\left(\delta_t\right) \cos\left(\beta\right)/L & \theta_c \\ \dot{v}_x &= \phi_t \theta_{\cos_t} & \theta_s \\ \dot{v}_y &= \phi_t \theta_{\sin_t} & v_x \\ \dot{a}_x &= 0 & v_y \\ \dot{a}_y &= 0 & a_x \\ \dot{v}_r &= 0 & a_y \end{aligned}$$

$$\begin{aligned} x_{t+1} &= x_t + \dot{x}\Delta t \\ y_{t+1} &= y_t + \dot{y}\Delta t \\ \theta_{\cos_{t+1}} &= \cos\left(\theta_t + \dot{\theta}\Delta t\right) \\ \theta_{\sin_{t+1}} &= \sin\left(\theta_t + \dot{\theta}\Delta t\right) \\ v_{x_{t+1}} &= v_{x_t} + \dot{v}_x\Delta t \\ v_{y_{t+1}} &= v_{y_t} + \dot{v}_y\Delta t \\ a_{x_{t+1}} &= a_{x_t} + \dot{a}_x\Delta t \\ a_{y_{t+1}} &= a_{y_t} + \dot{a}_y\Delta t \\ v_{r_{t+1}} &= v_{r_t} + \dot{v}_r\Delta t. \end{aligned}$$

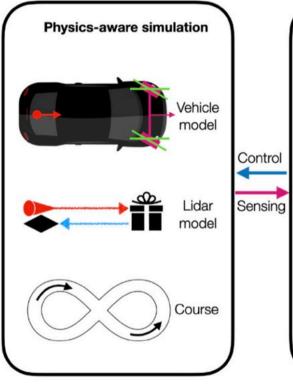
Live Examples

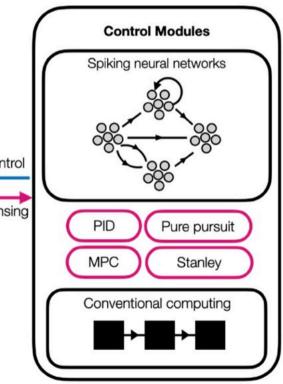
Neuromorphic PID with KBM

Autonomous driving controllers with neuromorphic spiking neural networks

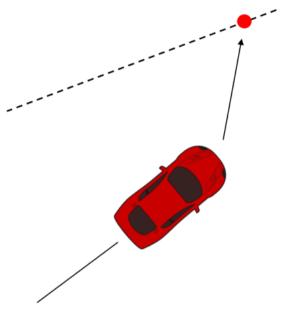


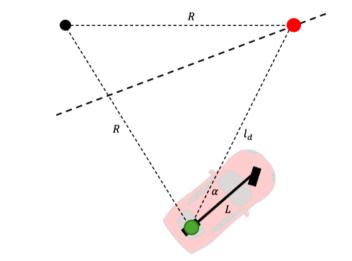
Raz Halaly and Elishai Ezra Tsur*



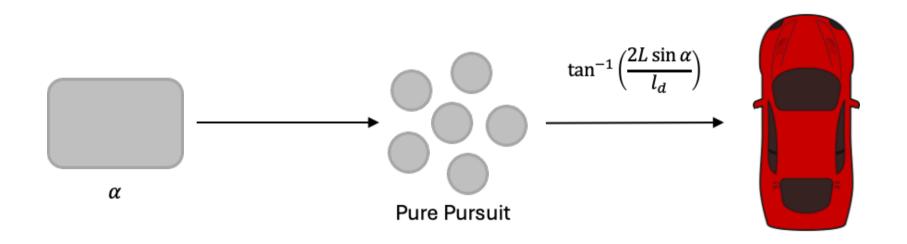


- Geometric path tracking controller
- Uses a look-ahead point
- Fixed distance on the reference path
- Computes the steering angle based on the point
- Does not control the velocity of the vehicle

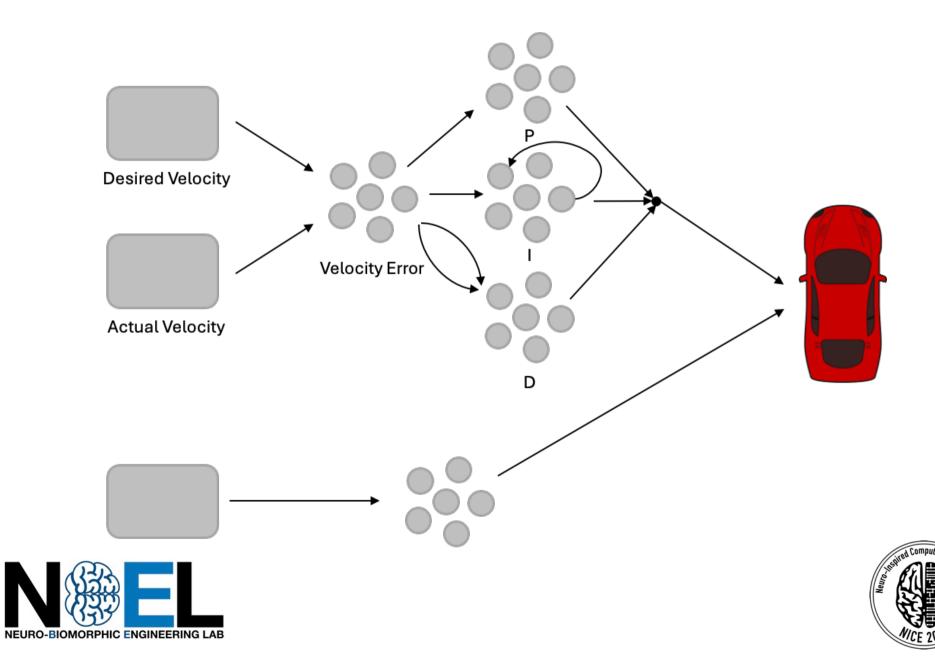




$$\delta(t) = \arctan\left(\frac{2L\sin\alpha}{l_d}\right)$$



And using PID to control velocity...



Live Examples

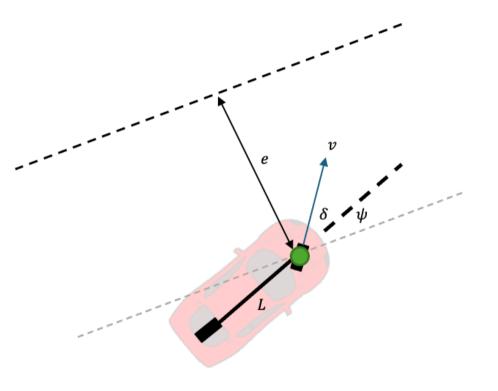
Pure pursuit with KBM

Stanley Controller

- Geometric path tracking controller
- Looks for reducing the heading and cross-track errors
- Computes the steering angle

$$\delta = \psi + \tan^{-1} \frac{e}{v}$$

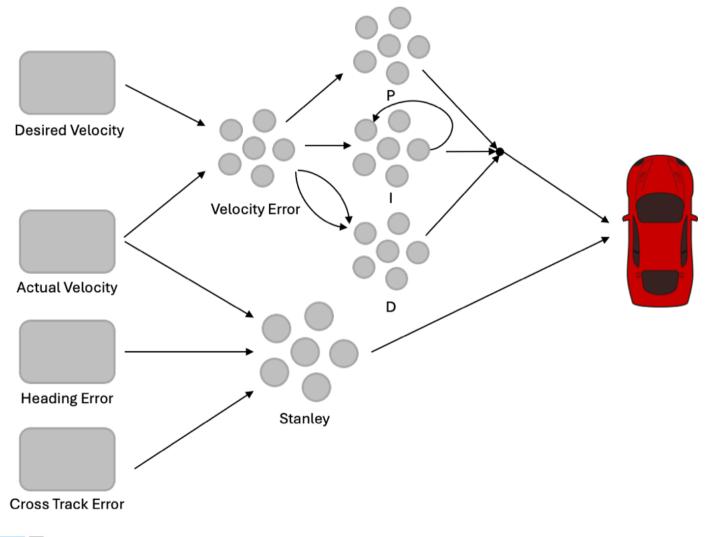
$$\uparrow \qquad \uparrow^{v}$$
Heading error CTE



Stanley Controller



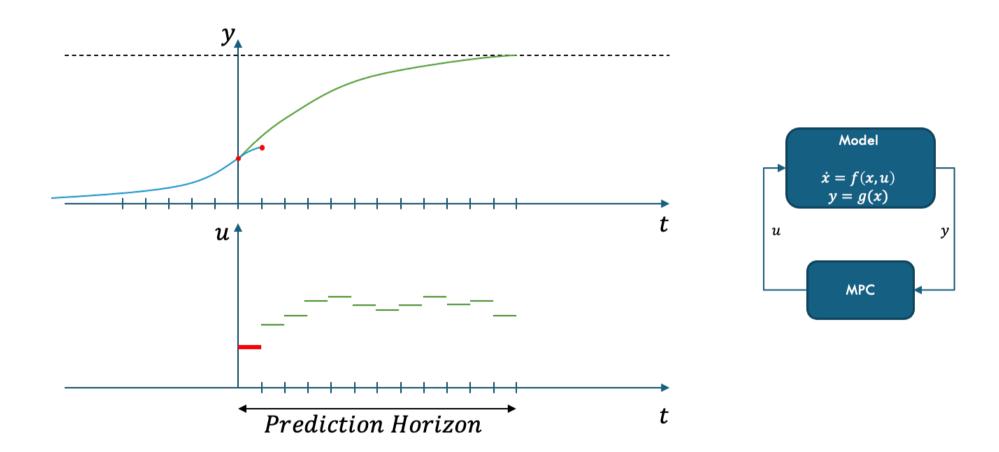
Stanley Controller

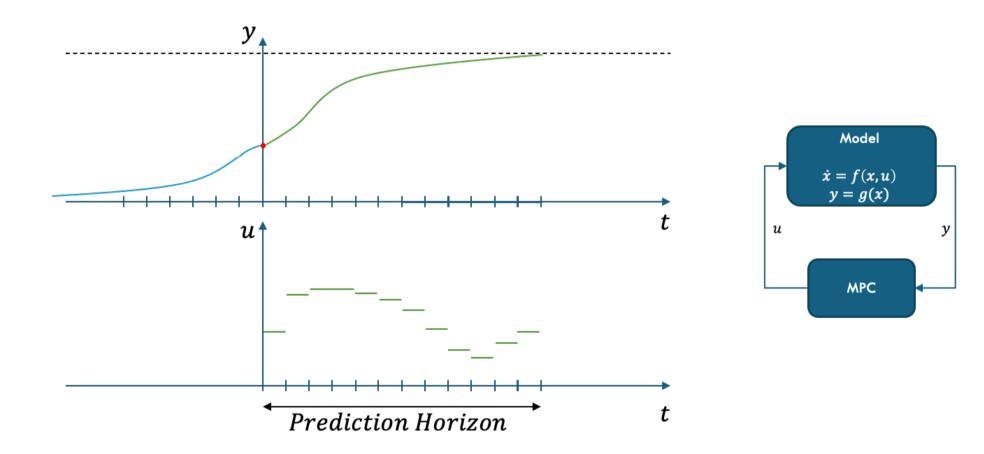


Live Examples

Stanley with KBM

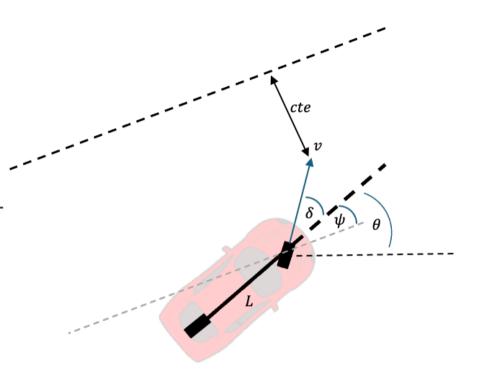
- Optimization based controller
- Predicts where the vehicle will be in the future
- Looks for minimizing a cost function
 - Can compute complex function
 - Can satisfy constrains
- Computational heavy
- Computes multiple parameters at once





What we optimize?

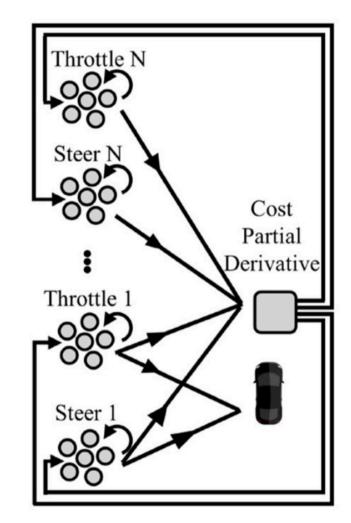
$$Cost = 50\Sigma_{k\in N}e_k^2 + 100\Sigma_{k\in N}\psi_k^2 + 100\Sigma_{k\in N}(v_{ref} - v_k)^2 + 100\Sigma_{k\in N}\delta_k^2 + 1\Sigma_{k\in N}a_k^2 + 200\Sigma_{k\in N}(\delta_k - \delta_{k-1})^2 + 10\Sigma_{k\in N}(a_k - a_{k-1})^2,$$



How we optimize?

$$\frac{\partial f}{\partial x_k} = \frac{f(x_1, \dots, x_k - \varepsilon, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{\varepsilon}$$

- 2N (throttle and steering) ensembles for n predictions
- Each ensemble was defined as an integrator with a recurrent synapse, which acts as a memory.
- All ensembles were connected through synapses to a CPU block that calculates the cost function.
- A CPU node applied root mean squared propagation (RMSprop) on the estimated partial derivative of the cost function.



RESULTS (manuscript)

Live Examples

MPC with **KBM**

Continuous adaptive nonlinear model predictive control using spiking neural networks and real-time learning

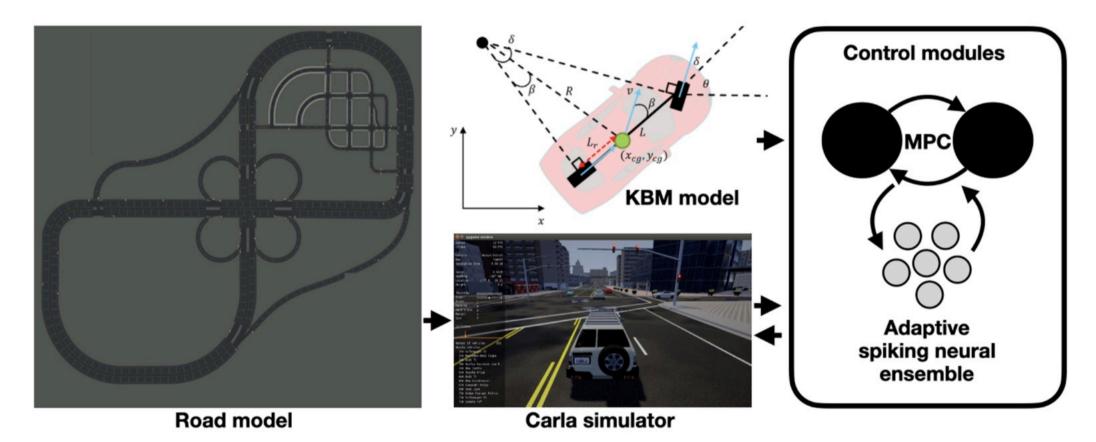
Raz Halaly and Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab, Open University of Israel, Ra'anana, Israel * Author to whom any correspondence should be addressed.

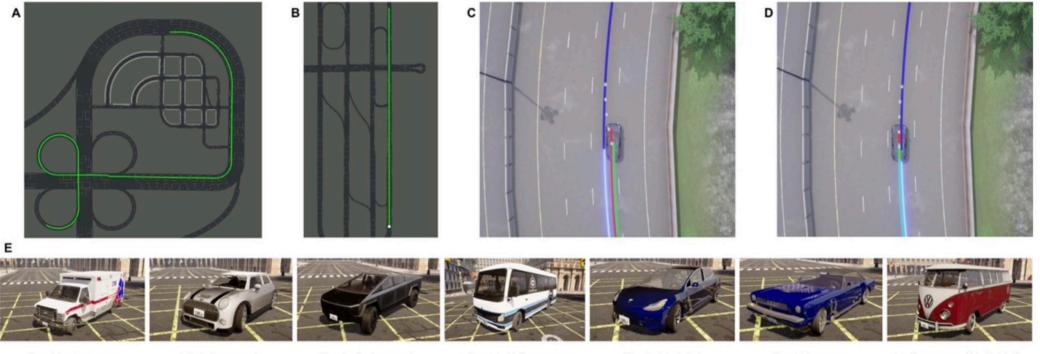
We tested our design with various vehicles (from a Tesla Model 3 to an Ambulance) experiencing malfunctioning and swift steering scenarios.

We demonstrate significant improvements in dynamic error rate compared with traditional MPC implementation with up to 89.15% median prediction error reduction with 5 spiking neurons and up to 96.08% with 5,000 neurons.

Continuous adaptive nonlinear model predictive control using spiking neural networks and real-time learning



Continuous adaptive nonlinear model predictive control using spiking neural networks and real-time learning



Ford Ambulance

Mini Cooper S

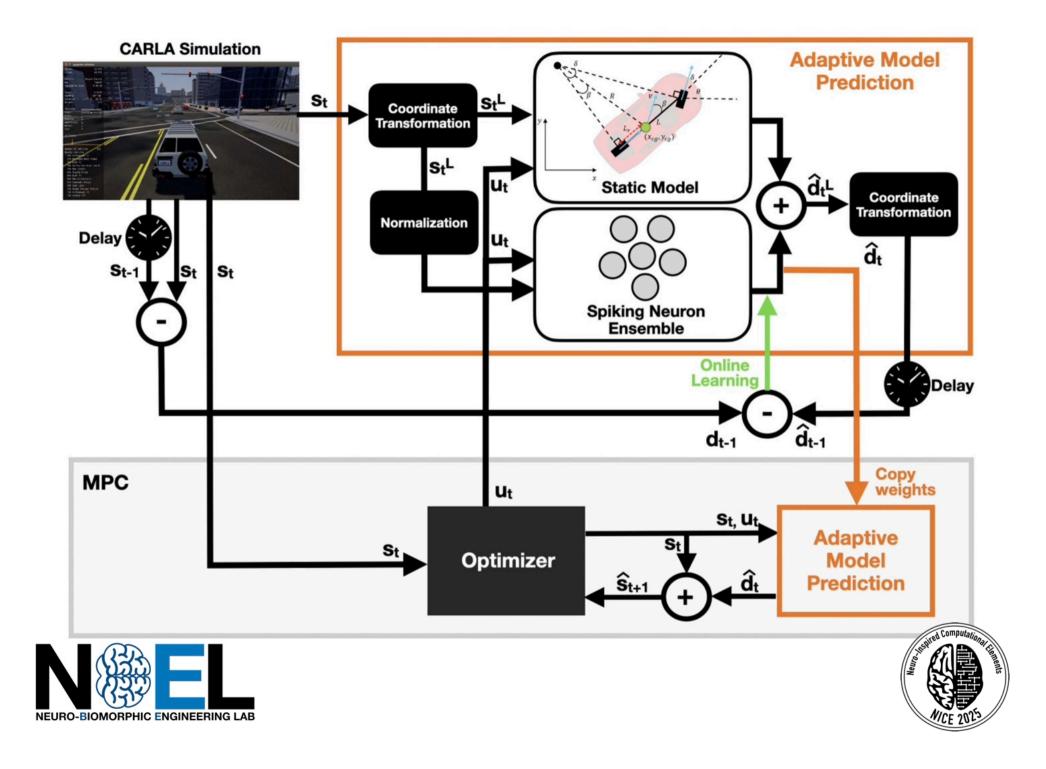
Tesla Cybertruck

Mitsubishi Fusorosa

Tesla Model 3

Ford Mustang

Volkswagen T2 (2021)



Scenarios

RESULTS (manuscript)