
TUTORIAL  
Autonomous Driving with Neuromorphic Controllers

Elishai Ezra Tsur
The Open University of Israel

Neuroscience

Design

Fabrication

Robotics

Computer
Science

Cyber Physical
Systems

Mechanical
Engineering

Open University of Israel

• The largest university in Israel with more
then 46,200 students

• 1 in every 5 students in Israel is a
student of the Open University

• 60 learning centres across Israel. Main
Campus in Raanana

• State of the art M.Sc program in
Computer Science

• Home for NBEL-lab.com

http://NBEL-lab.com

Is funded by:

And clinically applied at:

Follow the code examples!

http://bit.ly/426swoN

http://bit.ly/426swoN

Tutorial Outline

Why Neuromorphic Control, Autonomous Behavior, Driving

What PID, Pure pursuit, Stanley Controller, MPC

How Neural Engineering Framework, Nengo, Airsim, Carla

Learn Resources

En
er

gy
 (k

T)

1

Precision
1

Where is Neuromorphic Computing is relevant?

102

106

104

108

1010

102 104 106 108

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018

En
er

gy
 (k

T)

1

Precision
1

Where is Neuromorphic Computing is relevant?

102

106

104

108

1010

102 104 106 108

Analog • Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018

En
er

gy
 (k

T)

1

Precision

Digital 90nm

1

Where is Neuromorphic Computing is relevant?

102

106

104

108

1010

102 104 106 108

Analog • Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

• Digital signals scales
logarithmically

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018

En
er

gy
 (k

T)

1

Precision

Digital 90nm

1

Where is Neuromorphic Computing is relevant?

102

106

104

108

1010

102 104 106 108

Digital 28nm

Analog • Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

• Digital signals scales
logarithmically

• The crossover point has
migrated to the left over the
years (with miniaturization) -
favoring digital over analog
computation for more and more
applications

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018

En
er

gy
 (k

T)

1

Precision

Digital 90nm

1

Where is Neuromorphic Computing is relevant?

102

106

104

108

1010

102 104 106 108

Digital 28nm

Analog Neuromorphic • Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

• Digital signals scales
logarithmically

• The crossover point has
migrated to the left over the
years (with miniaturization) -
favoring digital over analog
computation for more and more
applications

• Most neuromorphic architectures
aim to mix analog-digital
design

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018

En
er

gy
 (k

T)

1

Precision

Digital 90nm

1

Where is Neuromorphic Computing is relevant?

102

106

104

108

1010

102 104 106 108

Digital 28nm

Analog Neuromorphic • Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

• Digital signals scales
logarithmically

• The crossover point has
migrated to the left over the
years (with miniaturization) -
favoring digital over analog
computation for more and more
applications

• Most neuromorphic architectures
aim to mix analog-digital
design to achieve best
performance across five-decade
precision range.

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018

In the Neural Engineering Framework

Encoding

Decoding

Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 1 neuron:

Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 2 neurons:

Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 20 neurons:

Live Examples

Representation, transformation and integration

Neural Engineering Framework
Computing with Spiking Neural Networks

Representation Transformation Dynamics

To learn more…

Control System / Feedback Loops

Goal

Goal

Calculate time based on movement velocity and distance from goal

SPOT
input output

Control System / Feedback Loops

Drift

Over
estimation

SPOT
input output

Control System / Feedback Loops

Drift

SPOTreference
output error

Over
estimation

Control System / Feedback Loops

SPOTreference
output error

Integration of sensing and
computation

Control System / Feedback Loops

Plant
Error

Controlled
variable

Actuating
signal

Controller

Commanded
variable

Feedback

Driving error to 0

What we want the
system to do

System we want to control

Control System / Feedback Loops

Error 0
0.1

50m

Feedback

Driving error to 0 System we want to control

Goal

50m

E = 50-0=50
5 m/sec

Control System / Feedback Loops

Error 5
0.1

50m

Feedback

Driving error to 0 System we want to control

Goal

50m

E = 50-5=45
4.5 m/sec

Control System / Feedback Loops

Error 9.5
0.1

50m

Feedback

Driving error to 0 System we want to control

Goal

50m

E = 50-9.5=40.5
4.05 m/sec

Control System / Feedback Loops

Error 9.5
0.1

50m

Feedback

Driving error to 0 System we want to control

E = 50-9.5=40.5
4.05 m/sec

Distance
50

Time

Walking speed

Time

P=0.1 5m/s

Control System / Feedback Loops

Error 9.5
0.1

50m

Feedback

Driving error to 0 System we want to control

E = 50-9.5=40.5
4.05 m/sec

Distance
50

Time

Walking speed

Time

10m/s

P=0.01

P=0.2
P=0.1 5m/s

Control System / Feedback Loops

1

Goal

50m

Propellor speed

Control System / Feedback Loops

1

Goal

50m

Propellor speed

50m 50RPM 0
E=50-0=50

Control System / Feedback Loops

1

Goal Propellor speed

50m 0RPM 50
E=50-50=0

Control System / Feedback Loops

1

Goal Propellor speed

50m 25RPM 25
E=50-25=25

25m

Control System / Feedback Loops

1

Goal Propellor speed

50m 25RPM 25
E=50-25=25

25m

Lift

Gravity

Hover speed = 25RPM
Stable state Error

Control System / Feedback Loops

1

Goal Propellor speed

50m 25RPM 25
E=50-25=25

25m

Lift

Gravity

Hover speed = 25RPM
Stable state Error

P=0.5, 50. * 0.5=25 RPM -> hover at 50. = Error
P=0.6, 41.6 * 0.6=25 RPM -> hover at 41.6 = Error
P=1. , 25. * 1. =25 RPM -> hover at 25 = Error
P=2. , 12.5.* 2. =25 RPM -> hover at 12.5 = Error
P=10 , 2.5.* 10. =25 RPM -> hover at 2.5 = Error

Control System / Feedback Loops

proportional

Present time

Past time

integrator

Plant

Control System / Feedback Loops

proportional

Present time

Past time

integrator

Stable state Error

Time Time

Integrator is increasing
the total sum

Plant

Control System / Feedback Loops

Goal

=0

>25RPM
E=0

During target reach the I component might get higher than 25RPM,
Inducing an overshoot

Distance
50

Control System / Feedback Loops

proportional

integrator

Plant

derivative

Accounting for the future: how fast the error is growing and shrinking

Control System / Feedback Loops

proportional

integrator

Plant

derivative

Error

Time

Error’ < 0

Look at the current rate of change of error
Determine how we are approaching target
Premature slowing down preventing overshooting

Control System / Feedback Loops

P

I

Plant

D

Control System / Feedback Loops

P

I

Plant

D

KI

KP

KD

Weighting
factors

Control System / Feedback Loops

PID Tuning

Error Pitch
Elevator

angle
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

PID Tuning

Error Pitch
Elevator

angle
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

MODEL

PID Tuning

Error Pitch
Elevator

angle
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

MODEL

Uncertainty; an approximation

 Robust control
 Designing a system which can handle uncertainty

Adding margins into the design: how much uncertainty can the system handle?
 guarantees that if the changes are within given bounds the control law need not be

 changed

PID Tuning

Error Pitch
Elevator

angle
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

MODEL

Uncertainty; an approximation

 Robust control
 Designing a system which can handle uncertainty
 Adding merging into the design: how much uncertainty can the system handle?guarantees that if the
 changes are within given bounds the control law need not be changed

 Adaptive control
 The capability of the system to modify its own operation to achieve the best possible mode of
 operation.

Adaptive control is different from robust control in that it does not need a priori information about
the bounds on these uncertain or time-varying parameters

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

Set of gains
Mach number 0.3: Kp = 1, Ki = 2, Kd = 3

Mach number 0.9: Kp = 2, Ki = 0.5, Kd = 2

Check Machgains

Gain Schedule

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

Check
variablesgains

Gain Schedule

Mach

Dynamic pressure

Kp = 1
Ki = 2
Kd = 3

Kp = 2
Ki = 0.5
Kd = 2

Kp = 1
Ki = 0.5
Kd = 3

Kp = 2
Ki = 0.5
Kd = 1

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

Check
variablesgains

Gain Schedule

Mach

Dynamic pressure

Kp = 1
Ki = 2
Kd = 3

Kp = 2
Ki = 0.5
Kd = 2

Kp = 1
Ki = 0.5
Kd = 3

Kp = 2
Ki = 0.5
Kd = 1

Angle of attack

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

Check
variablesgains

Gain Schedule

MANY gain sets
Storage and search
Hard in corner cases

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

Check
variablesgains

Gain Schedule

MANY gain sets
Storage and search
Hard in corner cases

Many innovations here….

PID Tuning

Error Pitch
PID

Pitch
command

Feedback

Driving error to 0 System we want to control

Check
variablesgains

Gain Schedule

Hard switching Transient-free switch.  
Setting transition time

Live Examples

Neuromorphic PID

Adaptive Control

DeWolf et al. 2016

• The premotor cortex (PMC) generates a trajectory
for the system to follow with a sequence of (x, y)
coordinates.

• The primary motor cortex (M1) receives these target
positions (1) from the PMC and compares them with the
current system state, received from the sensory cortices
(SCx), through (2).

• M1 combines this signal with locally calculated Jacobians
to transform the desired hand movement commands into a
low-level signal that is sent to the arm and cerebellum (CB)
along (3).

• The CB projects an adaptive
signal to the body along (4) that
compensates for velocity and
movement errors. Visual and
proprioceptive feedback projects from
the body along (5) to the CB and SCx.

Adaptive Control

DeWolf et al. 2016

PMC: 
Trajectory generation system
Using Dynamic Movement Primitives (DMPs)

Dynamic movement primitives (DMPs)
In Spiking Neurons

Don’t apply
forces when

resetting

Forces (x, y)

Pace setter

Canonical system

Point
attractors

Dynamic movement primitives (DMPs)
In Spiking Neurons

x*, y*
Task

space

q0, q1 Joint
angles

x, y

ux

uM

uadapt

-Mdq

uM

q, dq

q, dq, x, y

uM

x, y

No adaptation with adaptation

DeWolf et al. 2016

Adaptive Control

DeWolf et al. 2020

In Simulation
No External Force

In Simulation
With External Force

On-line Learning

Adaptive control is held neuromorphically

input

10 dimensions
1000 neurons

Outputq, dq uadapt

Training

Representing values in 10 dimensions is not trivial. Tuning curves has to
be (very) carefully defined. Values should be scaled experimentally.

In Simulation
With External Force and Adaptation

Clinical Usability Study

Adaptive Control

Objective: Zero-Shot Trajectory Optimization

Simulation Frameworks
AirSim (microsoft)

Simulation Frameworks
CARLA

Kinematic Bicycle Model

Kinematic Bicycle Model

Live Examples

Neuromorphic PID with KBM

Pure Pursuit

• Geometric path tracking controller

• Uses a look-ahead point

• Fixed distance on the reference path

• Computes the steering angle based on the point

• Does not control the velocity of the vehicle

Pure Pursuit

And using PID to control velocity…

Pure Pursuit

Pure Pursuit

Live Examples

Pure pursuit with KBM

Stanley Controller

• Geometric path tracking controller

• Looks for reducing the heading and
cross-track errors

• Computes the steering angle

Heading error CTE

Stanley Controller

Stanley Controller

Live Examples

Stanley with KBM

MPC

• Optimization based controller

• Predicts where the vehicle will be in the
future

• Looks for minimizing a cost function

• Can compute complex function

• Can satisfy constrains

• Computational heavy

• Computes multiple parameters at once

MPC

MPC

MPC

What we optimize?

MPC
How we optimize?

• 2N (throttle and steering) ensembles for n
predictions

• Each ensemble was defined as an integrator with
a recurrent synapse, which acts as a memory.

• All ensembles were connected through synapses
to a CPU block that calculates the cost function.

• A CPU node applied root mean squared
propagation (RMSprop) on the estimated partial
derivative of the cost function.

RESULTS (manuscript)

Live Examples

MPC with KBM

We tested our design with various vehicles (from a Tesla Model 3 to an
Ambulance) experiencing malfunctioning and swift steering scenarios.
We demonstrate significant improvements in dynamic error rate compared
with traditional MPC implementation with up to 89.15% median prediction
error reduction with 5 spiking neurons and up to 96.08% with 5,000
neurons.

RESULTS (manuscript)

