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Follow the code examples!

http://bit.ly/426swoN
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Tutorial Outline
Why Neuromorphic Control, Autonomous Behavior, Driving
What PID, Pure pursuit, Stanley Controller, MPC

How Neural Engineering Framework, Nengo, Airsim, Carla

Learn Resources
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* Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.
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* Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

e Digital signals scales
logarithmically
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* Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

e Digital signals scales
logarithmically

e The crossover point has
migrated to the left over the
years (with miniaturization) -
favoring digital over analog
computation for more and more
applications
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Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

Digital signals scales
logarithmically

The crossover point has
migrated to the left over the
years (with miniaturization) -
favoring digital over analog
computation for more and more
applications

Most neuromorphic architectures
aim to mix analog-digital
design
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Energy consumed to generate
an analog voltage signal scales
quadratically with its amplitude.

Digital signals scales
logarithmically

The crossover point has
migrated to the left over the
years (with miniaturization) -
favoring digital over analog
computation for more and more
applications

Most neuromorphic architectures
aim to mix analog-digital
design to achieve best
performance across five-decade
precision range.
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In the Neural Engineering Framework
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Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 1 neuron:
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Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 2 neurons:

1.0+ 2.0~ 1.0+
-1.0 ] 0.0 7 -1.0 1
-0.429 0.071 -0.429 0.071 -0.429 0.071




Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 20 neurons:
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Live Examples

Representation, transformation and integration
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Neural Engineering Framework
Computing with Spiking Neural Networks

Representation Transformation Dynamics
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To learn more...

NEUROMORPHIC ENGINEERING

The Scientist’s, Algorithms Designer’s and Computer
Architect’s Perspectives on Brain-Inspired Computing

The brain is not a glorified digital computer. It does not store information in registers, and
it does not mathematically transform mental representations to establish perception or
behavior. The brain cannot be downloaded to a computer to provide immortality, nor can it
destroy the world by having its emerged consciousness traveling in cyberspace. However,
studying the brain’s core computation architecture can inspire scientists, computer
architects, and algorithm designers to think fundamentally differently about their craft.

Neuromorphic engineers have the ultimate goal of realizing machines with some aspects
of cognitive intelligence. They aspire to design computing architectures that could surpass
existing digital von Neumann-based computing architectures’ performance. In that sense,
brain research bears the promise of a new computing paradigm. As part of a complete
cognitive hardware and software ecosystem, neuromorphic engineering opens new frontiers
for neuro-robotics, artificial intelligence, and supercomputing applications.

The book presents neuromorphic engineering from three perspectives: the scientist,
the computer architect, and the algorithm designer. It zooms in and out of the different
disciplines, allowing readers with diverse backgrounds to understand and appreciate the
field. Overall, the book covers the basics of neuronal modeling, neuromorphic circuits, neural
architectures, event-based communication, and the neural engineering framework.
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Control System / Feedback Loops

Goal
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Control System / Feedback Loops

Goal

Calculate time based on movement velocity and distance from goal
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Control System / Feedback Loops

Over ’

estimation
Drift

A
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Control System / Feedback Loops

Over ’

estimation
Drift

reference
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Control System / Feedback Loops

Integration of sensing and
computation

o Error o —

reference =§ ) SPOT

ff output .
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Control System / Feedback Loops

What we want the
system to do

Commanded
variable , o=

| Actuating o Controlled
Error { 3} signal {3} variable

—$4 Controller {~—=$4 Plant

Drivin errr to0 System we want to control

rFeedback

X
iRy E L
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Control System / Feedback Loops

E = 50-0=50
>0m Y ErrOI { e

} 5m/sec |

0.1

Drivin errr to0 System we want to control

rFeedback
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Control System / Feedback Loops

E = 50-5=45
50m g Erro. £

T 345misecf L. 5
0.1 | b L

Drivin errr o 0

System we want to control

rFeedback
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Control System / Feedback Loops

E = 50-9.5=40.5

50m . Error { T W.o05m/secf ..
4" > i ! SIS

Drivin errr o 0

9'5~.

System we want to control

rFeedback
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Control System / Feedback Loops

50m . Error {f = W.05m/secf ..
IR WY g W N 0.1 MU N ?Vrf;7’
>/ > _ ! »

Drivin errr o 0

E = 50-9.5=40.5

System we want to control

rFeedback

50

Distance 5m/s

Walking speed

Time Time

2
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Control System / Feedback Loops

E = 50-9.5=40.5

50m . Error {f = W.05m/secf ... 9.5
PR "N g S 0.1 AR *?ﬁhEz’ o
4" ¥ _ ! P

rFeedback

50

Distance

= 10m/s

5m/s
Walking speed

Time Time
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Control System / Feedback Loops

Propellor speed
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Control System / Feedback Loops

Propellor speed
E=50-0=50
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Control System / Feedback Loops

Goal Propellor speed
E=50-50=0

2
N EL

NEURO-BIOMORPHIC ENGINEERING LAB



Control System / Feedback Loops

Goal Propellor speed
E=50-25=25

2
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Control System / Feedback Loops

Goal Propellor speed
E=50-25=25

Lift

Gravity

Stable state Error

Hover speed = 25RPM

2
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Control System / Feedback Loops

Goal

E=50-25=25

1

Lift

Gravity

50m r—

Propellor speed

Stable state Error

Hover speed = 25RPM

P=0.5, 50. * 0.5=25 RPM -> hover at 50. = Error
P=0.6, 41.6 * 0.6=25 RPM -> hover at 41.6 = Error
P=1. ,25. *1. =25 RPM -> hover at 25 = Error
P=2. ,12.5.* 2. =25 RPM -> hover at 12.5 = Error
P=10, 2.5.* 10. =25 RPM -> hover at 2.5 = Error

A
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Control System / Feedback Loops

Past time

integrator

~%M proportional y%»{ >4  Plant

“Present time
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Control System / Feedback Loops

Past time

integrator

4 4 Integrator is increasing
the total sum

Stable state Error

Time Time

X
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Control System / Feedback Loops

During target reach the | component might get higher than 25RPM,
Inducing an overshoot

50 EEE
Distance

2
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Control System / Feedback Loops

integrator
-89 proportional P%»{ »%M  Plant

derivative

Accounting for the future: how fast the error is growing and shrinking

X
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Control System / Feedback Loops

integrator

Look at the current rate of change of error
Determine how we are approaching target

Error Premature slowing down preventing overshooting

Error’ <0

Time

X
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Control System / Feedback Loops

X
iRy E L
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Control System / Feedback Loops

Weighting
factrs

Plant

X
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PID Tuning

Pitch ~_________ FElevator
S ) angkas‘g

command , =

Drivin errorto 0 System we want to control

rFeedback

X
<*ﬁIEEEI-|
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PID Tuning

Pitch ~_________ FElevator
S ) angkas‘g

command , =

Drivin errorto 0 System we want to control

rFeedback

X
<qrfIEE“l-.
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PID Tuning

Uncertainty; an approximation
Pitch Elevator A
T —— " angle .

command , Pitc\

Drivin errorto 0 System we want to control

rFeedback

Robust control
Designing a system which can handle uncertainty
Adding margins into the design: how much uncertainty can the system handle?
guarantees that if the changes are within given bounds the control law need not be

changed
13-
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PID Tuning

Uncertainty; an approximation
Pitch Elevator A
s SRR PRESNG W oo \,}. angle | 'j e SELNAA i

command , Pitc\

Driving error to 0 System we want to control

rFeedback

Robust control

Designing a system which can handle uncertainty

Adding merging into the design: how much uncertainty can the system handle?guarantees that if the
changes are within given bounds the control law need not be changed

Adaptive control

The capability of the system to modify its own operation to achieve the best possible mode of
operation.

Adaptive control is different from robust control in that it does not need a priori information about
the bounds on these uncertain or time-varying parameters



PID Tuning

Pitch

command , = Error g 3 f :

Drivin errorto 0 System we want to control

Feedback |

X
<*ﬁIEEEI-|
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Pitch
command

PID Tuning Gain Schedule

gains Check Mach

o Error £} . —am } Pitch

Drivin errorto 0 System we want to control
Feedback

Set of gains
Mach number 0.3: Kp=1,Ki=2,Kd =3
Mach number 0.9: Kp = 2, Ki = 0.5, Kd = 2

X
iRy E L
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PID Tuning Gain Schedule

gains

Pitch

command , = Error §

PID

Dynamic pressure

Kp=1
Ki=0.5
Kd=3

Kp=1
Ki=2

Kd

Drivin errorto 0

" Check
,__variables

System we want to control

Feedack |

Kp=2
Ki = 0.5
Kd =1

Kp=2
Ki=0.5
Kd =2

» Mach



PID Tuning Gain Schedule

gains

Pitch

command , = Error §

PID

Dynamic pressure

Angle of attack

Kp=1
Ki=0.5
Kd=3

Kp=1
Ki=2

Kd

Drivin errorto 0

" Check
,__variables

System we want to control

Feedack |

Kp=2
Ki = 0.5
Kd =1

Kp=2
Ki=0.5
Kd =2

» Mach



PID Tuning Gain Schedule

_ {  Check
gains o 2riableS

Pitch

command , = Error g . f ,‘

Drivin errorto 0 System we want to control
Feedback

MANY gain sets
Storage and search
Hard in corner cases

X
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PID Tuning Gain Schedule

_ {  Check
gains o 2riableS

Pitch

command , = Error g . f ,'

Driving error to O System we want to control
Feedback

MANY gain sets
Storage and search =—=§ Many innovations here....

Hard in corner cases
ul
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PID Tuning Gain Schedule

_ {  Check
gains o 2riableS

Pitch

command , = Error g . f ,‘

Drivin errorto 0 System we want to control
Feedback

Transient-free switch.
Setting transition time

X
iRy E L
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Live Examples

Neuromorphic PID
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Adaptive Control

® The premotor cortex (PMC) generates a trajectory
for the system to follow with a sequence of (x, y)
coordinates. T

e The primary motor cortex (M1) receives these target G
positions (1) from the PMC and compares them with the \>_ _
current system state, received from the sensory cortices
(SCx), through (2).

® M1 combines this signal with locally calculated Jacobians
to transform the desired hand movement commands into a
low-level signal that is sent to the arm and cerebellum (CB)

along (3).

e The CB projects an adaptive
signal to the body along (4) that
compensates for velocity and
movement errors. Visual and
proprioceptive feedback projects from
the body along (5) to the CB and SCx.

NEEL
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DeWolf et al. 2016




Adaptive Control

PMC:
Trajectory generation system
Using Dynamic Movement Primitives (DMPs)

DeWolf et al. 2016
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Dynamic movement primitives (DMPs)
In Spiking Neurons

Canonical system

ramp ens

ramp ens ramp
ramp ens

Forces (X,y) \ 2°7

-1.0 .
-1.960 0.036
Point

output attractors
2.0~

!
2.0 2.0 J o

relay gate
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Dynamic movement primitives (DMPs)
In Spiking Neurons

1.0 9

CB ingut

-1.0 1.0

-1.0-
CB

10

f
0 1
error -1.950 0.052
X*, y* d, dqs X,y M1
10+
Task I
space

arm

-1.950

N

NEURO-BIOMORPHIC ENGINEERING LAB




No adaptation

with adaptation
. . T 150 T T T T
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DeWolf et al. 2016
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Adaptive Control

Performance Power cost of adaptation
1.0 | oo oag —— Adaptive CPU S .
—— Adaptive GPU g 10° -
0.8 A —— Adaptive Loihi g
o 5
£ o6l 100 -
v \ Loihi CPU GPU
[}
E 0.4 - Control loop latency
—~ 4.5 - A
0.21 Es404 !} h &
()
c 3.0 7
- = 3.0 B a5 - -
' PD

Trial PID Loihi CPU GPU

DeWolf et al. 2020
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In Simulation
No External Force

Run speed = 1.000 x real time  [S]lower, [F]aster
Ren[d]er every frame On
Switch camera (#cams = 2) [Tab] (camera ID = -1)

[CJontact forces On
Referenc(e] frames On
T(r]ansparent off

Display [M]ocap bodies On

Stop [Space]
Advance simulation by one step [right arrow]
[H)ide Menu

Record [V)]ideo (Off)

Cap]t]ure frame

Start [i]pdb

Toggle geomgroup visibility 04
Adaptation:

Step 12635
timestep 0.00200|

n_substeps 1




Run speed = 1.000 x real time
Ren[d]er every frame

Switch camera (#cams = 2)
[Clontact forces

Relerence] irames
T[rjansparent

Display [M]ocap bodies

Stop

Advance simulation by one step
[H)ide Menu

Record [V]ideo (Off)
Cap|t]ure frame

Start [ijpdb

Toggle geomgroup visibility
Adaptation:
FPS 7

Solver iterations 1

[S)lower, [Flaster

On

[Tab] (camera ID = -1)
On

On

Off

On

[Space]

[right arrow]

0-4
False

In Simulation
External Force

Step 739
timestep 0.00200|
n_substeps 1




On-line Learning

Adaptive control is held neuromorphically

10 dimensions
O 1000 neurons

Representing values in 10 dimensions is not trivial. Tuning curves has to
be (very) carefully defined. Values should be scaled experimentally.

N EL
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In Simulation
External Force and Adaptation

Run speed = 1.000 x real time  [S]lower, [F]aster

Ren[d]er every frame On

Switch camera (#cams = 2) [Tab] (camera ID = -1)
[Clontact forces On

Referenc{e] irames On

T[rjansparent ot

Display [M]ocap bodies On

Stop [Space]

Advance simulation by one step [right arrow]

[H]ide Menu

Record [V]ideo (Off)

Capl|t]ure frame

Start [ijpdb

Toggle geomgroup visibility [
Adaptation: False

Step 394
timestep 0.00200|
n_substeps 1

FPS 187
Solver iterations 1




LW - ‘ ; ; : TyPE Original Research
g” frontiers | Frontiers in Neuroscience PUBLISHED 29 September 2022

pol 10.3389/fnins.2022.1007736

Adaptive control of a wheelchair
mounted robotic arm with
neuromorphically integrated
velocity readings and
online-learning

Michael Ehrlich!t, Yuval Zaidel!, Patrice L. Weiss??3,
Arie Melamed Yekel3, Naomi Gefen3, Lazar Supic* and
Elishai Ezra Tsur*

Neuro-Biomorphic Engineering Lab, Open University of Israel, Ra'anana, Israel, 2Department of
Occupational Therapy, University of Haifa, Haifa, Israel, *The Helmsley Pediatric & Adolescent
Rehabilitation Research Center, ALYN Hospital, Jerusalem, Israel, “Accenture Labs, San Francisco,
CA, United States

P
13

NEURO-BIOMORPHIC ENGINEERING LAB




Clinical Usability Study

Error
correction

position

Spiking End-effector

neurons

Controller

Control
signals
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Adaptive Control

A B 4 mmm With adaptation
- With t adaptati
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Objective: Zero-Shot Trajectory Optimization

MOTORSPORT.

577 FORZA
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Simulation Frameworks

AirSim (microsoft)

A——
Fly with
me view

: o YV
: - .. ‘ .. “. "‘ ¢ y*
- [
A v T 9 i P
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Simulation Frameworks

CARLA

pygame window




IOP Publishing Bioinspir. Biomim. 16 (2021) 066016 https://doi.org/10.1088/1748-3190/ac290c

Bioinspiration & Biomimetics

PAPER
@ CrossMark

LiDAR-driven spiking neural network for collision avoidance in
st @Utonomous driving

ACCEPTED FOR PUBLICATION
22 September 2021

et Albert Shalumov, Raz Halaly and Elishai Ezra Tsur*

21 October 2021 Neuro-Biomorphic Engineering Lab at the Open University of Israel, Ra’anana, Israel
* Author to whom any correspondence should be addressed.
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Kinematic Bicycle Model
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Kinematic Bicycle Model
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Live Examples

Neuromorphic PID with KBM
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with neuromorphic spiking neural in Neurorobotics
networks

Raz Halaly and Elishai Ezra Tsur*
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Pure Pursuit

e Geometric path tracking controller
e Uses a look-ahead point
¢ Fixed distance on the reference path

e Computes the steering angle based on the point

¢ Does not control the velocity of the vehicle
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Pure Pursuit
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Pure Pursuit

tan-1 (ZL sin a)

la

Pure Pursuit

And using PID to control velocity...
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Pure Pursuit
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Live Examples

Pure pursuit with KBM
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Stanley Controller

e Geometric path tracking controller

® | ooks for reducing the heading and
cross-track errors -

e Computes the steering angle

e
§ =1 +tan"t-

T N

Heading error CTE
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Stanley Controller

Actual Velocity
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Stanley Controller
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Live Examples

Stanley with KBM
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MPC

e Optimization based controller

e Predicts where the vehicle will be in the Pt
future Pt

® | ooks for minimizing a cost function -
e Can compute complex function _--
® Can satisfy constrains

e Computational heavy

o Computes multiple parameters at once
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MPC
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MPC

What we optimize? ot \
Cost =502keNei -+ 100):k€N1p,f+ ,/’/ ’ .
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MPC

How we optimize?

i B F(X15 es Xk — €5 ees X)) — F(XLs cves Xk 00 Xiy)
Bxk &

e 2N (throttle and steering) ensembles for n
predictions

® Fach ensemble was defined as an integrator with
a recurrent synapse, which acts as a memory.

e All ensembles were connected through synapses
to a CPU block that calculates the cost function.

e A CPU node applied root mean squared
propagation (RMSprop) on the estimated partial
derivative of the cost function.
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RESULTS (manuscript)



Live Examples

MPC with KBM
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Neuromorph. Comput. Eng. 4 (2024) 024006 https://doi.org/10.1088/2634-4386/ad4209

NEUROMORPHIC

Computing and Engineering

Continuous adaptive nonlinear model predictive control using
spiking neural networks and real-time learning

Raz Halaly and Elishai Ezra Tsur”

Neuro-Biomorphic Engineering Lab, Open University of Israel, Ra’anana, Israel
* Author to whom any correspondence should be addressed.

We tested our design with various vehicles (from a Tesla Model 3 to an
Ambulance) experiencing malfunctioning and swift steering scenarios.

We demonstrate significant improvements in dynamic error rate compared
with traditional MPC implementation with up to 89.15% median prediction
error reduction with 5 spiking neurons and up to 96.08% with 5,000
neurons.
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Continuous adaptive nonlinear model predictive control using
spiking neural networks and real-time learning

Control modules

Adaptive
spiking neural
ensemble

Road model Carla simulator
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Continuous adaptive nonlinear model predictive control using
spiking neural networks and real-time learning

Ford Ambulance Mini Cooper S Tesla Cybertruck Mitsubishi Fusorosa Tesla Model 3 Ford Mustang Volkswagen T2 (2021)

NEEL

NEURO-BIOMORPHIC ENGINEERING LAB




CARLA Simulation

MPC
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Scenarios

Normal Driving Malfunctional Steering

Metrics
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RESULTS (manuscript)



