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Follow the code examples!     

http://bit.ly/426swoN

http://bit.ly/426swoN


Tutorial Outline 

Why    Neuromorphic Control, Autonomous Behavior, Driving 

What  PID, Pure pursuit, Stanley Controller, MPC 

How   Neural Engineering Framework, Nengo, Airsim, Carla 

Learn Resources 
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Digital 28nm

Analog Neuromorphic • Energy consumed to generate 
an analog voltage signal scales 
quadratically with its amplitude.  

• Digital signals scales 
logarithmically 

• The crossover point has 
migrated to the left over the 
years (with miniaturization) - 
favoring digital over analog 
computation for more and more 
applications  

• Most neuromorphic architectures 
aim to mix analog-digital 
design to achieve best 
performance across five-decade 
precision range. 

A Neuromorph’s Prospectus Kwabena Boahen, IEEE, 2018





In the Neural Engineering Framework

Encoding

Decoding



Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 1 neuron:



Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 2 neurons:



Computing with Spiking Neural Networks
Representation

Encoding-Decoding with 20 neurons:



Live Examples

Representation, transformation and integration



Neural Engineering Framework
Computing with Spiking Neural Networks

Representation Transformation Dynamics



To learn more… 
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Goal

Calculate time based on movement velocity and distance from goal

SPOT
input output 

Control System / Feedback Loops



Drift

Over 
estimation

SPOT
input output 

Control System / Feedback Loops



Drift

SPOTreference 
output error 

Over 
estimation

Control System / Feedback Loops



SPOTreference 
output error 

Integration of sensing and 
computation

Control System / Feedback Loops



Plant
Error 

Controlled 
variable 

Actuating 
signal 

Controller

Commanded 
variable 

Feedback 

Driving error to 0

What we want the 
system to do

System we want to control

Control System / Feedback Loops



Error 0
0.1

50m

Feedback 

Driving error to 0 System we want to control

Goal

50m 

E = 50-0=50 
5 m/sec

Control System / Feedback Loops



Error 5
0.1

50m

Feedback 

Driving error to 0 System we want to control

Goal

50m 

E = 50-5=45 
4.5 m/sec

Control System / Feedback Loops



Error 9.5
0.1

50m

Feedback 

Driving error to 0 System we want to control

Goal

50m 

E = 50-9.5=40.5 
4.05 m/sec

Control System / Feedback Loops



Error 9.5
0.1

50m

Feedback 

Driving error to 0 System we want to control

E = 50-9.5=40.5 
4.05 m/sec

Distance
50

Time

Walking speed

Time

P=0.1 5m/s

Control System / Feedback Loops



Error 9.5
0.1

50m

Feedback 

Driving error to 0 System we want to control

E = 50-9.5=40.5 
4.05 m/sec

Distance
50

Time

Walking speed

Time

10m/s

P=0.01

P=0.2
P=0.1 5m/s

Control System / Feedback Loops
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Goal

50m 

Propellor speed

Control System / Feedback Loops
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Goal

50m 

Propellor speed

50m 50RPM 0 
E=50-0=50

Control System / Feedback Loops
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Goal Propellor speed

50m 0RPM 50 
E=50-50=0

Control System / Feedback Loops
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Goal Propellor speed

50m 25RPM 25
E=50-25=25

25m 

Control System / Feedback Loops
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Goal Propellor speed

50m 25RPM 25
E=50-25=25

25m 

Lift

Gravity

Hover speed = 25RPM 
Stable state Error
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1

Goal Propellor speed

50m 25RPM 25
E=50-25=25

25m 

Lift

Gravity

Hover speed = 25RPM 
Stable state Error

P=0.5, 50.   * 0.5=25 RPM -> hover at 50.   = Error 
P=0.6, 41.6 * 0.6=25 RPM -> hover at 41.6 = Error 
P=1.  , 25.   * 1.  =25 RPM -> hover at 25    = Error 
P=2.  , 12.5.* 2.  =25 RPM -> hover at 12.5 = Error 
P=10 , 2.5.* 10.  =25 RPM -> hover at 2.5   = Error

Control System / Feedback Loops



proportional

Present time

Past time

integrator

Plant

Control System / Feedback Loops



proportional

Present time

Past time

integrator

Stable state Error

Time Time

Integrator is increasing 
the total sum

Plant

Control System / Feedback Loops



Goal

=0

>25RPM
E=0

During target reach the I component might get higher than 25RPM, 
Inducing an overshoot

Distance
50

Control System / Feedback Loops



proportional

integrator

Plant

derivative

Accounting for the future: how fast the error is growing and shrinking

Control System / Feedback Loops



proportional

integrator

Plant

derivative

Error

Time

Error’ < 0

Look at the current rate of change of error 
Determine how we are approaching target 
Premature slowing down preventing overshooting

Control System / Feedback Loops
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KI

KP

KD

Weighting 
factors

Control System / Feedback Loops



PID Tuning

Error Pitch
Elevator 

angle
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control
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Error Pitch
Elevator 

angle
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

MODEL



PID Tuning

Error Pitch
Elevator 

angle
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

MODEL

Uncertainty; an approximation

 Robust control
 Designing a system which can handle uncertainty

Adding margins into the design: how much uncertainty can the system handle?
 guarantees that if the changes are within given bounds the control law need not be

 changed



PID Tuning

Error Pitch
Elevator 

angle
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

MODEL

Uncertainty; an approximation

 Robust control
 Designing a system which can handle uncertainty
 Adding merging into the design: how much uncertainty can the system handle?guarantees that if the
 changes are within given bounds the control law need not be changed

 Adaptive control
 The capability of the system to modify its own operation to achieve the best possible mode of
   operation.

Adaptive control is different from robust control in that it does not need a priori information about 
the bounds on these uncertain or time-varying parameters



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

Set of gains 
Mach number 0.3: Kp = 1, Ki = 2, Kd = 3 

Mach number 0.9: Kp = 2, Ki = 0.5, Kd = 2

Check Machgains

Gain Schedule



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

Check 
variablesgains

Gain Schedule

Mach 

Dynamic pressure 

Kp = 1  
Ki = 2  
Kd = 3 

Kp = 2  
Ki = 0.5  
Kd = 2 

Kp = 1  
Ki = 0.5  
Kd = 3 

Kp = 2  
Ki = 0.5  
Kd = 1 



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

Check 
variablesgains

Gain Schedule

Mach 

Dynamic pressure 

Kp = 1  
Ki = 2  
Kd = 3 

Kp = 2  
Ki = 0.5  
Kd = 2 

Kp = 1  
Ki = 0.5  
Kd = 3 

Kp = 2  
Ki = 0.5  
Kd = 1 

Angle of attack



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

Check 
variablesgains

Gain Schedule

MANY gain sets 
Storage and search 
Hard in corner cases



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

Check 
variablesgains

Gain Schedule

MANY gain sets 
Storage and search 
Hard in corner cases

Many innovations here….



PID Tuning

Error Pitch
PID

Pitch 
command

Feedback 

Driving error to 0 System we want to control

Check 
variablesgains

Gain Schedule

Hard switching Transient-free switch.  
Setting transition time



Live Examples

Neuromorphic PID



Adaptive Control

DeWolf et al. 2016

• The premotor cortex (PMC) generates a trajectory 
for the system to follow with a sequence of (x, y) 
coordinates.  

• The primary motor cortex (M1) receives these target 
positions (1) from the PMC and compares them with the 
current system state, received from the sensory cortices 
(SCx), through (2).  

• M1 combines this signal with locally calculated Jacobians 
to transform the desired hand movement commands into a 
low-level signal that is sent to the arm and cerebellum (CB) 
along (3).  

• The CB projects an adaptive 
signal to the body along (4) that 
compensates for velocity and 
movement errors. Visual and 
proprioceptive feedback projects from 
the body along (5) to the CB and SCx.



Adaptive Control

DeWolf et al. 2016

PMC: 
Trajectory generation system 
Using Dynamic Movement Primitives (DMPs)



Dynamic movement primitives (DMPs)
In Spiking Neurons

Don’t apply 
forces when 

resetting

Forces (x, y)

Pace setter

Canonical system

Point 
attractors



Dynamic movement primitives (DMPs)
In Spiking Neurons

x*, y*
Task 

space

q0, q1 Joint 
angles

x, y

ux

uM

uadapt 

-Mdq 

uM

q, dq 

q, dq, x, y

uM

x, y



No adaptation with adaptation

DeWolf et al. 2016



Adaptive Control

DeWolf et al. 2020



In Simulation
No External Force



In Simulation
With External Force



On-line Learning

Adaptive control is held neuromorphically 

input

10 dimensions 
1000 neurons

Outputq, dq uadapt

Training

Representing values in 10 dimensions is not trivial. Tuning curves has to 
be (very) carefully defined. Values should be scaled experimentally.  



In Simulation
With External Force and Adaptation





Clinical Usability Study



Adaptive Control





Objective: Zero-Shot Trajectory Optimization



Simulation Frameworks
AirSim (microsoft)



Simulation Frameworks
CARLA











Kinematic Bicycle Model



Kinematic Bicycle Model



Live Examples

Neuromorphic PID with KBM





Pure Pursuit 

• Geometric path tracking controller 

• Uses a look-ahead point 

• Fixed distance on the reference path 

• Computes the steering angle based on the point 

• Does not control the velocity of the vehicle 



Pure Pursuit 



And using PID to control velocity…

Pure Pursuit 



Pure Pursuit 



Live Examples

Pure pursuit with KBM



Stanley Controller

• Geometric path tracking controller 

• Looks for reducing the heading and 
cross-track errors 

• Computes the steering angle 

Heading error CTE



Stanley Controller



Stanley Controller



Live Examples

Stanley with KBM



MPC

• Optimization based controller 

• Predicts where the vehicle will be in the 
future 

• Looks for minimizing a cost function 

• Can compute complex function 

• Can satisfy constrains 

• Computational heavy   

• Computes multiple parameters at once 



MPC



MPC



MPC

What we optimize?



MPC
How we optimize?

• 2N (throttle and steering) ensembles for n 
predictions 

• Each ensemble was defined as an integrator with 
a recurrent synapse, which acts as a memory.  

• All ensembles were connected through synapses 
to a CPU block that calculates the cost function.  

• A CPU node applied root mean squared 
propagation (RMSprop) on the estimated partial 
derivative of the cost function.



RESULTS (manuscript)



Live Examples

MPC with KBM



We tested our design with various vehicles (from a Tesla Model 3 to an 
Ambulance) experiencing malfunctioning and swift steering scenarios.  
We demonstrate significant improvements in dynamic error rate compared 
with traditional MPC implementation with up to 89.15% median prediction 
error reduction with 5 spiking neurons and up to 96.08% with 5,000 
neurons. 











RESULTS (manuscript)


