
Tutorial: Using the
NeuroBench Harness

NICE 2025

Benedetto Leto Jason Yik

Benchmarking under a common framework aligns research,
identifies best practices, and drives technological progress.

Inclusive Actionable Iterative

Tutorial Outline

Presentation

Examples / Documentation Walkthrough

Novel Benchmarking Notebook

- L2MU, a spiking neuron SSM

Open Discussion

Tutorial Focus: The Algorithm Track Harness

Algorithm Track

- Hardware-agnostic benchmarking of cost metrics
- Open-source research tool (harness) for automatic benchmarking
- Inference-focused, no existing support for training benchmarking

What about hardware system benchmarking?

- Supporting research tooling will need a lot more hardware maturity
- Extensive specifications for application setups, measurement methods are

available for ASC and QUBO tasks, as well as official results from Loihi/Xylo
- Available for you to compare your designs

Algorithm Track Harness

Automatic
benchmarking for

neural network models

Currently compatible
with torch-based

libraries

Datasets,
Data Processing,

Metrics

Actively maintained
and built for
extensibility

pip install neurobench

Is it really automatic benchmarking?

- Not everyone uses the same research frameworks
- Norse, SpikingJelly, snnTorch, …
- PyTorch-based, JAX-based, …
- Continuous-time, analog, …

- The tooling is as automatic as possible
- Simplicity and extensibility are the goals
- Simple enough for you to validate and customize for your

method
- Extensible to your research flow

Places to Find Information

Repository top: https://github.com/NeuroBench/neurobench/tree/main

- Everything can be accessed from the README
- Dev branch: https://github.com/NeuroBench/neurobench/tree/dev

Documentation website: https://neurobench.readthedocs.io/en/latest/

Example scripts (trained models):
https://github.com/NeuroBench/neurobench/tree/dev/examples

Leaderboard of benchmark results:
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst

https://github.com/NeuroBench/neurobench/tree/main
https://github.com/NeuroBench/neurobench/tree/dev
https://neurobench.readthedocs.io/en/latest/
https://github.com/NeuroBench/neurobench/tree/dev/examples
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst

Algorithm Track Harness

Algorithm Track Harness - Metrics

Algorithm Track Metrics: No influence of runtime platform

Static Metrics:

Workload
Metrics:

Feature, not
measured

Footprint Connection
Sparsity

Execution
Rate*

Accuracy Activation
Sparsity

Synaptic
Operations

Overview of Included Metrics

- Footprint
- Static, Memory requirement of parameters and buffers

- Connection sparsity
- Static, Ratio of zeroes in model weights

- Accuracy
- Workload, Task-defined

- Activation Sparsity
- Workload, Ratio of zeroes in neuron activations (LIF, ReLU)

- Synaptic Operations
- Workload, Number of times an activation triggers with a weight (avg over all forward passes)
- Dense: accounts for all operations, even zero ops
- Effective MACs: non-zero ops only, for non-binary activations
- Effective ACs: non-zero ops only, for binary activations
- !! Expensive to calculate !! Get rid of this metric for faster benchmark run (3x)

- Formal metric specifications are in paper

Static Metrics

- Evaluate fixed properties of the model, not data-dependent
- Computed once per benchmark run

Footprint Connection
Sparsity

class StaticMetric(ABC):
def __call__(self, model: NeuroBenchModel) -> float

Workload Metrics

- Data dependent, computed batch-by-batch
- By default, the metric is averaged over the batch size

- e.g., classification accuracy
- Also support metrics which use more complex accumulations

- e.g., mAP (object detection), R^2 (regression)
- Utilizes hooks (callback functions) in order to extract per-layer (per-pytorch

module) information
- e.g., activation sparsity, synaptic operations

Accuracy Activation
Sparsity

Synaptic
Operations

Standard Workload Metric: Averaged over Batches

- In addition to the model, the interface uses the predictions and the batch data
(processed data and targets)

- Hooks are necessary to extract per-module information from the execution

class WorkloadMetric(ABC):
def __init__(self, requires_hooks: bool = False)
def __call__(self, model: NeuroBenchModel, preds: Tensor, data:

tuple[Tensor, Tensor]
) -> float

Accumulated Workload Metric: Define how to calculate

- __init__ initializes state variables
- __call__ updates the state variables for each batch
- compute() returns the current metric value
- reset() resets the state, useful for successive runs

class AccumulatedMetric(WorkloadMetric):
def compute(self) -> float
def reset(self) -> None

Accumulated Metric Example: R^2

https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/worklo
ad/r2.py

https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py
https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py

Developing Custom Metrics

https://neurobench.readthedocs.io/en/latest/custom_metrics.html

- Extend the abstract classes to define custom metrics
- Tutorial notebook and the docs above have examples of defining custom

metrics

Neuron
Dynamics

Robustness Fan-out

https://neurobench.readthedocs.io/en/latest/custom_metrics.html

Algorithm Track Harness - Datasets

Dataset Interface

- Directly uses pytorch Dataset and DataLoader
- https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
- Native compatibility for dataset libraries like Tonic

- https://tonic.readthedocs.io/en/latest/
- Benchmark run uses DataLoader to process batch-by-batch

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://tonic.readthedocs.io/en/latest/

Included Datasets (with Examples)

https://github.com/NeuroBench/neurobench/tree/main/examples

Keyword Few-shot,
Continual Learning

Event Camera
Object Detection

Primate Motor
Prediction

Chaotic Function
Prediction

Google Speech
Commands

DVS Gesture IMU Activity
Recognition

https://github.com/NeuroBench/neurobench/tree/main/examples

Application
Continual expansion of multilingual keyword dictionary using few training examples.

Dataset
Multilingual Spoken Word Corpus (MSWC) keyword dataset (50 languages, over 6000 hours).

Task
Model base-trains on 100 keywords across 6 languages. Then, it successively undergoes 10-way,
5-shot learning sessions of 100 total new keywords from 10 new languages.

Correctness
Classification accuracy is measured after each session, on all previously
learned classes.

Keyword Few-shot Continual Learning

Application
Real-time, energy-efficient / always-on automotive object detection, autonomous driving.

Dataset
Prophesee 1MP Gen 4 Automotive Detection dataset (14.65 hours, 3.5TB uncompressed).

Task
Detect car, two-wheeler, pedestrian. [train / val / test] split of [11.2 / 2.2 / 2.2] hours.

Correctness
COCO mean average precision (mAP).

Event Camera Object Detection

Application
Sensorimotor biophysiological emulation, for prosthetics and brain-computer interfaces.

Dataset
Motor cortex recordings of two non-human primates engaged in reaching tasks (touch screen).

Task
Use cortical recording time-series to predict fingertip reach velocity in X and Y dimensions.

Correctness
R2 of predicted velocities against ground truth.

Primate Motor Decoding

Application
Dynamic time-series forecasting, (markets, climate, signals, etc.). Also a small dimensional problem
useful for prototyping emerging resource-constrained hardware (i.e., mixed-signal).

Dataset
Mackey-Glass time series, one-dimensional non-linear time delay differential equation.

Task
Train using the first half of the generated time series, then autonomously forecast the second half.

Correctness
Symmetric mean absolute percentage error (sMAPE).

Chaotic Function Prediction

Algorithm Track Harness - Model

Model Interface

- General interface supports many frameworks
- Support in existing tool for connecting / collecting hooks
- Wrappers for TorchModel, SNNTorchModel

- Includes boilerplate code for conventional execution
- Verify that the execution applies correctly to your model

class NeuroBenchModel(ABC):
def __init__(self)
def __call__(self, batch)
def __net__(self)

Modules as Post-processing Blocks

- Custom NeuroBenchModel can be used to describe sequence of module
pipelines

- e.g., obj detection head/box_coder:
https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L
52

- Currently, only module from __net__ will be hooked/measured

https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52
https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52

Algorithm Track Harness - Data Processing

Data Processor Interfaces

- Pre-processors applied to data before it is handed to model
- Post-processors take model output and transform to target shape
- Callables (e.g., lambda functions) matching interface can be used
- !! Processors not currently included in metrics evaluation, account for this in

the limitations of the benchmarking study !!

class NeuroBenchPreProcessor(ABC):
def __call__(self, dataset: tuple[Tensor, Tensor]) ->

tuple[Tensor, Tensor]

class NeuroBenchPostProcessor(ABC):
def __call__(self, spikes: Tensor) -> Tensor

How much of all this should you know?

- Depends on your algorithm
- Using standard/supported execution flows, should be generally automatic
- Using custom synaptic layers, neurons, you probably need to build custom

components
- Your responsibility to ensure the benchmark is correct for your work

Benchmark Top - Putting Everything Together

B = neurobench.Benchmark(model, dataloader, preprocessors,
postprocessors, [static_metrics, workload_metrics])

- Define all the pieces and pass them into Benchmark

results = B.run(args)

- Call run, returns dict of results

Various QOL Features

- Log results to JSON
- Export model to NIR / ONNX
- Get batch-by-batch results (verbose)
- Run without output (quiet)
- Specify GPU to run on (device)
- Update the processors, dataset for successive runs (i.e., for continual

learning)

Harness Recap

- Simple/extensible
- Supports all official NeuroBench algorithmic benchmark tasks, and more
- You are ultimately responsible for correct benchmarking
- We are here to help you!

How to be involved

- Using tasks for research
- Check out examples and open-source code (e.g., RSNN from ZenkeLab)
- Validate your results
- Extend using the standard interfaces (e.g., custom metrics)

- Development
- Check out CONTRIBUTING.md
- We meet every 2 weeks on Tuesdays to cover outstanding issues and next ideas

- Best way to contact us: File an issue, reach out via email
- jyik@g.harvard.edu
- benedetto.leto@studenti.polito.it

mailto:jyik@g.harvard.edu
mailto:benedetto.leto@studenti.polito.it

Next directions

Crossing over between the algorithm and hardware tracks

- Metrics that are more representative of hardware performance
- e.g., Eff. SynOPs currently treats activation sparsity and weight sparsity the same

- Developing virtual-machine backend for network execution
- Evaluate mapping and routing strategies
- Metrics like traffic load, core operation counts, memory usage

Connecting to non-Pytorch backends

Closed-loop (gym environment) tasks

Tutorial Outline

Presentation

Examples / Documentation Walkthrough

Novel Benchmarking Notebook

- L2MU, a spiking neuron SSM

Open Discussion

