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Benchmarking under a common framework aligns research,
identifies best practices, and drives technological progress.
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NeuroBench

9 , SynOps
Model R Footprint (bytes) Dense  Eff MACs Eff ACs

ANN Baseline | 0.5755 27160 6236 4970 0
SNN Baseline | 0.5805 29248 7300 0 413

AEGRU 0.6982 45520 54283 25316 0

RSNN-L 0.6978 4833360 1206272 0 42003

RSNN-S 0.6604 27144 13440 0 304

ConvGRU 0.6209 26568 4947 627 247



Tutorial Outline

Presentation
Examples / Documentation Walkthrough
Novel Benchmarking Notebook

- L°MU, a spiking neuron SSM

Open Discussion




Tutorial Focus: The Algorithm Track Harness

Algorithm Track

- Hardware-agnostic benchmarking of cost metrics
- Open-source research tool (harness) for automatic benchmarking
- Inference-focused, no existing support for training benchmarking

What about hardware system benchmarking?

- Supporting research tooling will need a lot more hardware maturity
- Extensive specifications for application setups, measurement methods are

available for ASC and QUBO tasks, as well as official results from Loihi/Xylo
Available for you to compare your designs




Algorithm Track Harness

= 1 4

Automatic Datasets, Currently compatible Actively maintained
benchmarking for Data Processing, with torch-based and built for
neural network models Metrics libraries extensibility

pip install neurobench

codecov | 77% pypl v2.0.0 downloads |




Is it really automatic benchmarking?

- Not everyone uses the same research frameworks
- Norse, SpikingJelly, snnTorch, ...
- PyTorch-based, JAX-based, ...
- Continuous-time, analog, ...

- The tooling is as automatic as possible
- Simplicity and extensibility are the goals

- Simple enough for you to validate and customize for your
method

- Extensible to your research flow




Places to Find Information

Repository top: htips://github.com/NeuroBench/neurobench/tree/main

- Everything can be accessed from the README
- Dev branch: https://qgithub.com/NeuroBench/neurobench/tree/dev

Documentation website: https://neurobench.readthedocs.io/en/latest/

Example scripts (trained models):
https://github.com/NeuroBench/neurobench/tree/dev/examples

Leaderboard of benchmark results:
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst



https://github.com/NeuroBench/neurobench/tree/main
https://github.com/NeuroBench/neurobench/tree/dev
https://neurobench.readthedocs.io/en/latest/
https://github.com/NeuroBench/neurobench/tree/dev/examples
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst
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Algorithm Track Harness - Metrics
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Algorithm Track Metrics: No influence of runtime platform
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Overview of Included Metrics

- Footprint
- Static, Memory requirement of parameters and buffers
- Connection sparsity
- Static, Ratio of zeroes in model weights
- Accuracy
- Workload, Task-defined
- Activation Sparsity
- Workload, Ratio of zeroes in neuron activations (LIF, ReLU)
- Synaptic Operations
- Workload, Number of times an activation triggers with a weight (avg over all forward passes)
Dense: accounts for all operations, even zero ops
Effective MACs: non-zero ops only, for non-binary activations

Effective ACs: non-zero ops only, for binary activations
- I Expensive to calculate !! Get rid of this metric for faster benchmark run (3x)

Formal metric specifications are in paper




ool
Static Metrics ‘ %

Connection

Footprint Sparsity

- Evaluate fixed properties of the model, not data-dependent
- Computed once per benchmark run

class StaticMetric (ABC) :
def call (self, model: NeuroBenchModel) -> float




Workload Metrics @ ﬁi% EZ

Activation Synaptic
Accuracy Sparsity Operations

- Data dependent, computed batch-by-batch
- By default, the metric is averaged over the batch size
- e.g., classification accuracy
- Also support metrics which use more complex accumulations
- e.g., mAP (object detection), R*2 (regression)
- Utilizes hooks (callback functions) in order to extract per-layer (per-pytorch

module) information
- e.g., activation sparsity, synaptic operations




Standard Workload Metric: Averaged over Batches

- In addition to the model, the interface uses the predictions and the batch data
(processed data and targets)
- Hooks are necessary to extract per-module information from the execution

class WorkloadMetric (ABC) :
def  init (self, requires hooks: bool = False)
def call (self, model: NeuroBenchModel, preds: Tensor, data:
tuple[Tensor, Tensor]
) —> float




Accumulated Workload Metric: Define how to calculate

__init__initializes state variables

__call__ updates the state variables for each batch
compute( ) returns the current metric value

reset( ) resets the state, useful for successive runs

class AccumulatedMetric (WorkloadMetric) :
def compute(self) -> float
def reset(self) -> None




Accumulated Metric Example: R"2

https://qgithub.com/NeuroBench/neurobench/blob/main/neurobench/metrics/worklo
ad/r2.py



https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py
https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py

Developing Custom Metrics

https://neurobench.readthedocs.io/en/latest/custom metrics.html

- Extend the abstract classes to define custom metrics
- Tutorial notebook and the docs above have examples of defining custom

% i v

Neuron Robustness Fan-out
Dynamics



https://neurobench.readthedocs.io/en/latest/custom_metrics.html

Algorithm Track Harness - Datasets
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Dataset Interface

- Directly uses pytorch Dataset and DatalLoader
- https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

- Native compatibility for dataset libraries like Tonic
https://tonic.readthedocs.io/en/latest/

- Benchmark run uses DatalLoader to process batch-by-batch



https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://tonic.readthedocs.io/en/latest/

Included Datasets (with Examples)

https://qgithub.com/NeuroBench/neurobench/tree/main/examples
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https://github.com/NeuroBench/neurobench/tree/main/examples

Keyword Few-shot Continual Learning

Application

Continual expansion of multilingual keyword dictionary using few training examples.

Dataset

Multilingual Spoken Word Corpus (MSWC) keyword dataset (50 languages, over 6000 hours).

Task

Model base-trains on 100 keywords across 6 languages. Then, it successively undergoes 10-way,

5-shot learning sessions of 100 total new keywords from 10 new languages.

Correctness

Classification accuracy is measured after each session, on all previously

learned classes.
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Event Camera Object Detection ¢

Application

Real-time, energy-efficient / always-on automotive object detection, autonomous driving.

Dataset
Prophesee 1MP Gen 4 Automotive Detection dataset (14.65 hours, 3.5TB uncompressed).

Task

Detect car, two-wheeler, pedestrian. [train / val / test] split of [11.2 /2.2 / 2.2] hours.

Correctness
COCO mean average precision (mAP).




Primate Motor Decoding

Application

Sensorimotor biophysiological emulation, for prosthetics and brain-computer interfaces.

Dataset
Motor cortex recordings of two non-human primates engaged in reaching tasks (touch screen).

Task

Use cortical recording time-series to predict fingertip reach velocity in X and Y dimensions.

Correctness
R? of predicted velocities against ground truth.




Chaotic Function Prediction

Application

Dynamic time-series forecasting, (markets, climate, signals, etc.). Also a small dimensional problem
useful for prototyping emerging resource-constrained hardware (i.e., mixed-signal).

Dataset
Mackey-Glass time series, one-dimensional non-linear time delay differential equation.

Task

Train using the first half of the generated time series, then autonomously forecast the second half.

Correctness
Symmetric mean absolute percentage error (sMAPE).
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Algorithm Track Harness - Model
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Model Interface

- General interface supports many frameworks
- Support in existing tool for connecting / collecting hooks
- Wrappers for TorchModel, SNNTorchModel

- Includes boilerplate code for conventional execution
- Verify that the execution applies correctly to your model

class NeuroBenchModel (ABC) :
def init (self)
def call (self, batch)
def net (self)




Modules as Post-processing Blocks

- Custom NeuroBenchModel can be used to describe sequence of module
pipelines
- e.g., obj detection head/box_coder:

https://qithub.com/NeuroBench/neurobench/blob/dev/examples/obj detection/benchmark.py#L
52

- Currently, only module from _ net  will be hooked/measured



https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52
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Algorithm Track Harness - Data Processing
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Data Processor Interfaces

- Pre-processors applied to data before it is handed to model

- Post-processors take model output and transform to target shape

- Callables (e.g., lambda functions) matching interface can be used

- ' Processors not currently included in metrics evaluation, account for this in
the limitations of the benchmarking study !!

class NeuroBenchPreProcessor (ABC) :
def call (self, dataset: tuple[Tensor, Tensor]) ->
tuple[Tensor, Tensor]

class NeuroBenchPostProcessor (ABC) :
def call (self, spikes: Tensor) -> Tensor




How much of all this should you know?

- Depends on your algorithm

- Using standard/supported execution flows, should be generally automatic

- Using custom synaptic layers, neurons, you probably need to build custom
components

- Your responsibility to ensure the benchmark is correct for your work

9 , SynOps
Model R Footprint (bytes) Dense  Eff MACs Eff ACs

ANN Baseline | 0.5755 27160 6236 4970 0
SNN Baseline | 0.5805 29248 7300 0 413

AEGRU 0.6982 45520 54283 25316 0

RSNN-L 0.6978 4833360 1206272 0 42003

RSNN-S 0.6604 27144 13440 0 304

ConvGRU 0.6209 26568 4947 627 247




Benchmark Top - Putting Everything Together

postprocessors, [static metrics, workload metrics])

B = neurobench.Benchmark (model, dataloader, preprocessors,

- Define all the pieces and pass them into Benchmark

results = B.run (args)

- Call run, returns dict of results




Various QOL Features

- Log results to JSON

- Export model to NIR / ONNX

- Get batch-by-batch results (verbose)

- Run without output (quiet)

- Specify GPU to run on (device)

- Update the processors, dataset for successive runs (i.e., for continual
learning)




Harness Recap

- Simple/extensible

- Supports all official NeuroBench algorithmic benchmark tasks, and more
- You are ultimately responsible for correct benchmarking

- We are here to help you!

Benchmark Inputs Benchmark Harness

Benchmark
B EE SN R " Results
Model ‘ : NeuroBenchModel @
: Wrapper ;
Benchmark Runtime |
""" : ) »7--7-7 S T-T-Tj; [ S i Static metrics:
Dataset ] i Initialize metic ¢ | . Calculate static ‘o Footprint
Dataloader ] calculations | | [T metrics i e Connectionsparsity
L Load data B
Processors I ;" Workload metrics:
el Sl : ;L..»,»: Calculate 4 Comectness i
3 o ) . . workload metrics e Activation sparsity E
-+ Model inference ‘ : : 0 SpERISCED
' . L - Apply
Desired metrics . post-processing R —
S —

[Legend: [ User-defined | User-customizable 'Benchmark-deﬁnedJ




How to be involved

- Using tasks for research

- Check out examples and open-source code (e.g., RSNN from ZenkelLab)
- Validate your results
- Extend using the standard interfaces (e.g., custom metrics)

- Development
- Check out CONTRIBUTING.md
- We meet every 2 weeks on Tuesdays to cover outstanding issues and next ideas

- Best way to contact us: File an issue, reach out via email

- jvik@g.harvard.edu
- benedetto.leto@studenti.polito.it



mailto:jyik@g.harvard.edu
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Next directions

Crossing over between the algorithm and hardware tracks

- Metrics that are more representative of hardware performance
- e.g., Eff. SynOPs currently treats activation sparsity and weight sparsity the same

- Developing virtual-machine backend for network execution

- Evaluate mapping and routing strategies
- Metrics like traffic load, core operation counts, memory usage

Connecting to non-Pytorch backends

Closed-loop (gym environment) tasks
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Novel Benchmarking Notebook

- L°MU, a spiking neuron SSM
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