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Benchmarking under a common framework aligns research, 
identifies best practices, and drives technological progress.
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- L2MU, a spiking neuron SSM
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Tutorial Focus: The Algorithm Track Harness

Algorithm Track

- Hardware-agnostic benchmarking of cost metrics
- Open-source research tool (harness) for automatic benchmarking
- Inference-focused, no existing support for training benchmarking

What about hardware system benchmarking?

- Supporting research tooling will need a lot more hardware maturity
- Extensive specifications for application setups, measurement methods are 

available for ASC and QUBO tasks, as well as official results from Loihi/Xylo
- Available for you to compare your designs



Algorithm Track Harness

Automatic 
benchmarking for 

neural network models

Currently compatible 
with torch-based 

libraries

Datasets, 
Data Processing, 

Metrics

Actively maintained 
and built for 
extensibility

pip install neurobench



Is it really automatic benchmarking? 

- Not everyone uses the same research frameworks
- Norse, SpikingJelly, snnTorch, …
- PyTorch-based, JAX-based, … 
- Continuous-time, analog, …

- The tooling is as automatic as possible
- Simplicity and extensibility are the goals
- Simple enough for you to validate and customize for your 

method
- Extensible to your research flow



Places to Find Information

Repository top: https://github.com/NeuroBench/neurobench/tree/main

- Everything can be accessed from the README
- Dev branch: https://github.com/NeuroBench/neurobench/tree/dev

Documentation website: https://neurobench.readthedocs.io/en/latest/

Example scripts (trained models): 
https://github.com/NeuroBench/neurobench/tree/dev/examples

Leaderboard of benchmark results: 
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst

https://github.com/NeuroBench/neurobench/tree/main
https://github.com/NeuroBench/neurobench/tree/dev
https://neurobench.readthedocs.io/en/latest/
https://github.com/NeuroBench/neurobench/tree/dev/examples
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst


Algorithm Track Harness



Algorithm Track Harness - Metrics



Algorithm Track Metrics: No influence of runtime platform

Static Metrics:

Workload 
Metrics:

Feature, not 
measured

Footprint Connection 
Sparsity

Execution 
Rate*

Accuracy Activation 
Sparsity

Synaptic 
Operations



Overview of Included Metrics

- Footprint
- Static, Memory requirement of parameters and buffers

- Connection sparsity
- Static, Ratio of zeroes in model weights

- Accuracy
- Workload, Task-defined

- Activation Sparsity
- Workload, Ratio of zeroes in neuron activations (LIF, ReLU)

- Synaptic Operations
- Workload, Number of times an activation triggers with a weight (avg over all forward passes)
- Dense: accounts for all operations, even zero ops
- Effective MACs: non-zero ops only, for non-binary activations
- Effective ACs: non-zero ops only, for binary activations
- !! Expensive to calculate !! Get rid of this metric for faster benchmark run (3x)

- Formal metric specifications are in paper



Static Metrics

- Evaluate fixed properties of the model, not data-dependent
- Computed once per benchmark run

Footprint Connection 
Sparsity

class StaticMetric(ABC):
def __call__(self, model: NeuroBenchModel) -> float



Workload Metrics

- Data dependent, computed batch-by-batch
- By default, the metric is averaged over the batch size

- e.g., classification accuracy
- Also support metrics which use more complex accumulations

- e.g., mAP (object detection), R^2 (regression)
- Utilizes hooks (callback functions) in order to extract per-layer (per-pytorch 

module) information
- e.g., activation sparsity, synaptic operations

Accuracy Activation 
Sparsity

Synaptic 
Operations



Standard Workload Metric: Averaged over Batches

- In addition to the model, the interface uses the predictions and the batch data 
(processed data and targets)

- Hooks are necessary to extract per-module information from the execution

class WorkloadMetric(ABC):
def __init__(self, requires_hooks: bool = False)
def __call__(self, model: NeuroBenchModel, preds: Tensor, data: 

tuple[Tensor, Tensor]
    ) -> float



Accumulated Workload Metric: Define how to calculate

- __init__ initializes state variables
- __call__ updates the state variables for each batch
- compute( ) returns the current metric value
- reset( ) resets the state, useful for successive runs

class AccumulatedMetric(WorkloadMetric):
def compute(self) -> float
def reset(self) -> None



Accumulated Metric Example: R^2

https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/worklo
ad/r2.py

https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py
https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py


Developing Custom Metrics

https://neurobench.readthedocs.io/en/latest/custom_metrics.html

- Extend the abstract classes to define custom metrics
- Tutorial notebook and the docs above have examples of defining custom 

metrics

Neuron 
Dynamics

Robustness Fan-out

https://neurobench.readthedocs.io/en/latest/custom_metrics.html


Algorithm Track Harness - Datasets



Dataset Interface

- Directly uses pytorch Dataset and DataLoader
- https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
- Native compatibility for dataset libraries like Tonic

- https://tonic.readthedocs.io/en/latest/
- Benchmark run uses DataLoader to process batch-by-batch

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://tonic.readthedocs.io/en/latest/


Included Datasets (with Examples)

https://github.com/NeuroBench/neurobench/tree/main/examples

Keyword Few-shot, 
Continual Learning

Event Camera 
Object Detection

Primate Motor 
Prediction

Chaotic Function 
Prediction

Google Speech 
Commands

DVS Gesture IMU Activity 
Recognition

https://github.com/NeuroBench/neurobench/tree/main/examples


Application
Continual expansion of multilingual keyword dictionary using few training examples.

Dataset 
Multilingual Spoken Word Corpus (MSWC) keyword dataset (50 languages, over 6000 hours).

Task 
Model base-trains on 100 keywords across 6 languages. Then, it successively undergoes 10-way, 
5-shot learning sessions of 100 total new keywords from 10 new languages.

Correctness
Classification accuracy is measured after each session, on all previously
learned classes.

Keyword Few-shot Continual Learning



Application
Real-time, energy-efficient / always-on automotive object detection, autonomous driving.

Dataset 
Prophesee 1MP Gen 4 Automotive Detection dataset (14.65 hours, 3.5TB uncompressed).

Task 
Detect car, two-wheeler, pedestrian. [train / val / test] split of [11.2 / 2.2 / 2.2] hours.

Correctness
COCO mean average precision (mAP).

Event Camera Object Detection



Application
Sensorimotor biophysiological emulation, for prosthetics and brain-computer interfaces.

Dataset 
Motor cortex recordings of two non-human primates engaged in reaching tasks (touch screen).

Task 
Use cortical recording time-series to predict fingertip reach velocity in X and Y dimensions.

Correctness
R2 of predicted velocities against ground truth.

Primate Motor Decoding



Application
Dynamic time-series forecasting, (markets, climate, signals, etc.). Also a small dimensional problem 
useful for prototyping emerging resource-constrained hardware (i.e., mixed-signal).

Dataset 
Mackey-Glass time series, one-dimensional non-linear time delay differential equation.

Task 
Train using the first half of the generated time series, then autonomously forecast the second half.

Correctness
Symmetric mean absolute percentage error (sMAPE).

Chaotic Function Prediction



Algorithm Track Harness - Model



Model Interface

- General interface supports many frameworks
- Support in existing tool for connecting / collecting hooks
- Wrappers for TorchModel, SNNTorchModel

- Includes boilerplate code for conventional execution
- Verify that the execution applies correctly to your model

class NeuroBenchModel(ABC):
def __init__(self)
def __call__(self, batch)
def __net__(self)



Modules as Post-processing Blocks

- Custom NeuroBenchModel can be used to describe sequence of module 
pipelines

- e.g., obj detection head/box_coder: 
https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L
52

- Currently, only module from __net__ will be hooked/measured

https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52
https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52


Algorithm Track Harness - Data Processing



Data Processor Interfaces

- Pre-processors applied to data before it is handed to model
- Post-processors take model output and transform to target shape
- Callables (e.g., lambda functions) matching interface can be used
- !! Processors not currently included in metrics evaluation, account for this in 

the limitations of the benchmarking study !!

class NeuroBenchPreProcessor(ABC):
def __call__(self, dataset: tuple[Tensor, Tensor]) -> 

tuple[Tensor, Tensor]

class NeuroBenchPostProcessor(ABC):
def __call__(self, spikes: Tensor) -> Tensor



How much of all this should you know?

- Depends on your algorithm
- Using standard/supported execution flows, should be generally automatic
- Using custom synaptic layers, neurons, you probably need to build custom 

components
- Your responsibility to ensure the benchmark is correct for your work



Benchmark Top - Putting Everything Together

B = neurobench.Benchmark(model, dataloader, preprocessors, 
postprocessors, [static_metrics, workload_metrics])

- Define all the pieces and pass them into Benchmark

results = B.run(args)

- Call run, returns dict of results



Various QOL Features

- Log results to JSON
- Export model to NIR / ONNX
- Get batch-by-batch results (verbose)
- Run without output (quiet)
- Specify GPU to run on (device)
- Update the processors, dataset for successive runs (i.e., for continual 

learning)



Harness Recap

- Simple/extensible
- Supports all official NeuroBench algorithmic benchmark tasks, and more
- You are ultimately responsible for correct benchmarking
- We are here to help you!



How to be involved

- Using tasks for research
- Check out examples and open-source code (e.g., RSNN from ZenkeLab)
- Validate your results
- Extend using the standard interfaces (e.g., custom metrics)

- Development
- Check out CONTRIBUTING.md
- We meet every 2 weeks on Tuesdays to cover outstanding issues and next ideas

- Best way to contact us: File an issue, reach out via email
- jyik@g.harvard.edu
- benedetto.leto@studenti.polito.it

mailto:jyik@g.harvard.edu
mailto:benedetto.leto@studenti.polito.it


Next directions

Crossing over between the algorithm and hardware tracks

- Metrics that are more representative of hardware performance
- e.g., Eff. SynOPs currently treats activation sparsity and weight sparsity the same

- Developing virtual-machine backend for network execution
- Evaluate mapping and routing strategies
- Metrics like traffic load, core operation counts, memory usage

Connecting to non-Pytorch backends

Closed-loop (gym environment) tasks
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