# Tutorial: Using the NeuroBench Harness

## **NICE 2025**



Benedetto Leto



Jason Yik





Benchmarking under a **common framework** <u>aligns research</u>, <u>identifies best practices</u>, and <u>drives technological progress</u>.

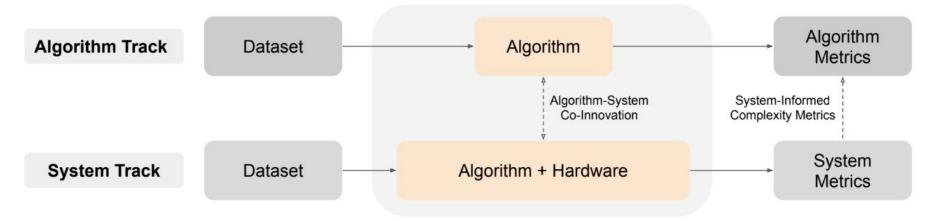
Inclusive

Actionable

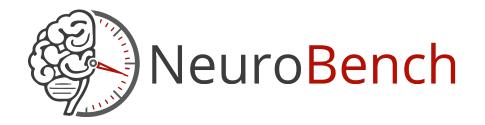
Iterative











| Model               | $R^2$  | Footprint (bytes) | SynOps  |          |         |
|---------------------|--------|-------------------|---------|----------|---------|
|                     |        |                   | Dense   | Eff_MACs | Eff_ACs |
| ANN Baseline        | 0.5755 | 27160             | 6236    | 4970     | 0       |
| <b>SNN</b> Baseline | 0.5805 | 29248             | 7300    | 0        | 413     |
| AEGRU               | 0.6982 | 45520             | 54283   | 25316    | 0       |
| <b>RSNN-L</b>       | 0.6978 | 4833360           | 1206272 | 0        | 42003   |
| <b>RSNN-S</b>       | 0.6604 | 27144             | 13440   | 0        | 304     |
| ConvGRU             | 0.6209 | 26568             | 4947    | 627      | 247     |



## **Tutorial Outline**

Presentation

Examples / Documentation Walkthrough

Novel Benchmarking Notebook

- L<sup>2</sup>MU, a spiking neuron SSM

**Open Discussion** 



## Tutorial Focus: The Algorithm Track Harness

#### Algorithm Track

- Hardware-agnostic benchmarking of cost metrics
- Open-source research tool (harness) for automatic benchmarking
- Inference-focused, no existing support for training benchmarking

#### What about hardware system benchmarking?

- Supporting research tooling will need a lot more hardware maturity
- Extensive specifications for application setups, measurement methods are available for ASC and QUBO tasks, as well as <u>official</u> results from Loihi/Xylo



- Available for you to compare your designs

## **Algorithm Track Harness**

codecov

77%





Automatic benchmarking for neural network models Datasets, Data Processing, Metrics

pypi v2.0.0

Currently compatible with **torch**-based libraries Actively maintained and built for extensibility



pip install neurobench



## Is it really automatic benchmarking?

- Not everyone uses the same research frameworks
  - Norse, SpikingJelly, snnTorch, ...
  - PyTorch-based, JAX-based, ...
  - Continuous-time, analog, ...

- The tooling is as automatic as possible
  - Simplicity and extensibility are the goals
  - Simple enough for you to validate and customize for your method
  - Extensible to your research flow





## **Places to Find Information**

Repository top: <a href="https://github.com/NeuroBench/neurobench/tree/main">https://github.com/NeuroBench/neurobench/tree/main</a>

- Everything can be accessed from the README
- Dev branch: <u>https://github.com/NeuroBench/neurobench/tree/dev</u>

Documentation website: <a href="https://neurobench.readthedocs.io/en/latest/">https://neurobench.readthedocs.io/en/latest/</a>

**Example scripts** (trained models):

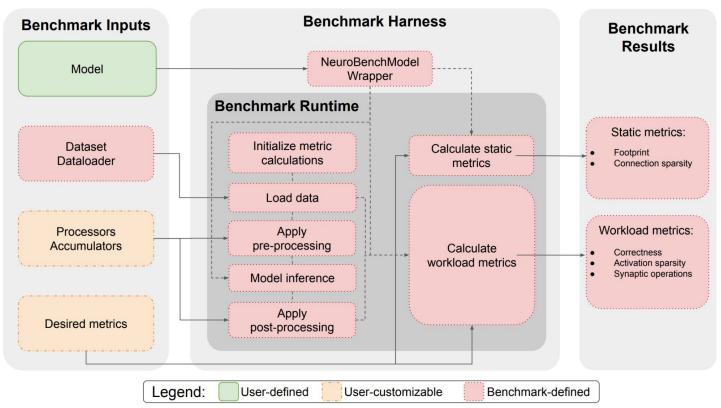
https://github.com/NeuroBench/neurobench/tree/dev/examples

Leaderboard of benchmark results:

https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst

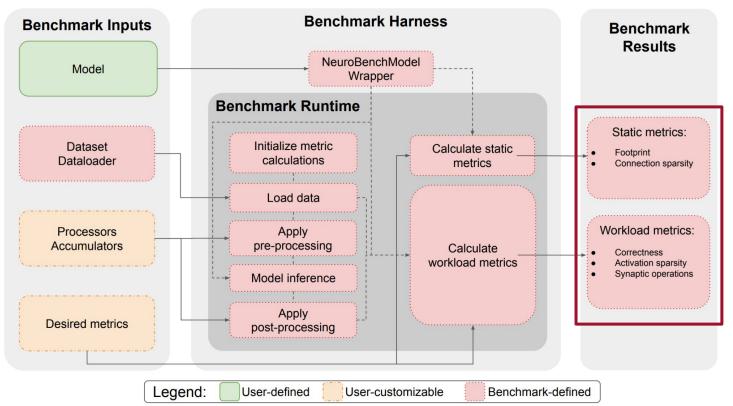


## **Algorithm Track Harness**





## **Algorithm Track Harness - Metrics**



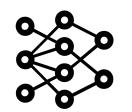


## Algorithm Track Metrics: No influence of runtime platform

Static Metrics:



Footprint



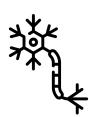
Connection Sparsity Feature, not measured

Execution Rate\*

Workload Metrics:



Accuracy



Activation Sparsity



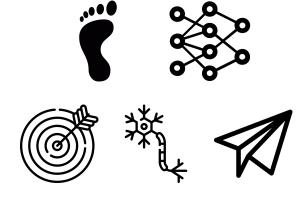
Synaptic Operations



## **Overview of Included Metrics**

- Footprint
  - Static, Memory requirement of parameters and buffers
- Connection sparsity
  - Static, Ratio of zeroes in model weights
- Accuracy
  - Workload, Task-defined
- Activation Sparsity
  - Workload, Ratio of zeroes in neuron activations (LIF, ReLU)
- Synaptic Operations
  - Workload, Number of times an activation triggers with a weight (avg over all forward passes)
  - Dense: accounts for all operations, even zero ops
  - Effective MACs: non-zero ops only, for non-binary activations
  - Effective ACs: non-zero ops only, for binary activations
  - !! Expensive to calculate !! Get rid of this metric for faster benchmark run (3x)
  - Formal metric specifications are in paper





### **Static Metrics**



Footprint

Connection Sparsity

- Evaluate fixed properties of the model, not data-dependent
- Computed once per benchmark run

```
class StaticMetric(ABC):
    def __call__(self, model: NeuroBenchModel) -> float
```



## Workload Metrics

Accuracy

Activation Synaptic Sparsity Operations

- Data dependent, computed batch-by-batch
- By default, the metric is averaged over the batch size
  - e.g., classification accuracy
- Also support metrics which use more complex accumulations
  - e.g., mAP (object detection), R^2 (regression)
- Utilizes hooks (callback functions) in order to extract per-layer (per-pytorch module) information
  - e.g., activation sparsity, synaptic operations



## Standard Workload Metric: Averaged over Batches

- In addition to the model, the interface uses the predictions and the batch data (processed data and targets)
- Hooks are necessary to extract per-module information from the execution

```
class WorkloadMetric(ABC):
    def __init__ (self, requires_hooks: bool = False)
    def __call__ (self, model: NeuroBenchModel, preds: Tensor, data:
    tuple[Tensor, Tensor]
    ) -> float
```



## Accumulated Workload Metric: Define how to calculate

- \_\_init\_\_ initializes state variables
- \_\_\_\_call\_\_\_ updates the state variables for each batch
- compute() returns the current metric value
- reset() resets the state, useful for successive runs

```
class AccumulatedMetric(WorkloadMetric):
    def compute(self) -> float
    def reset(self) -> None
```



## Accumulated Metric Example: R<sup>2</sup>

https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/worklo ad/r2.py



## **Developing Custom Metrics**

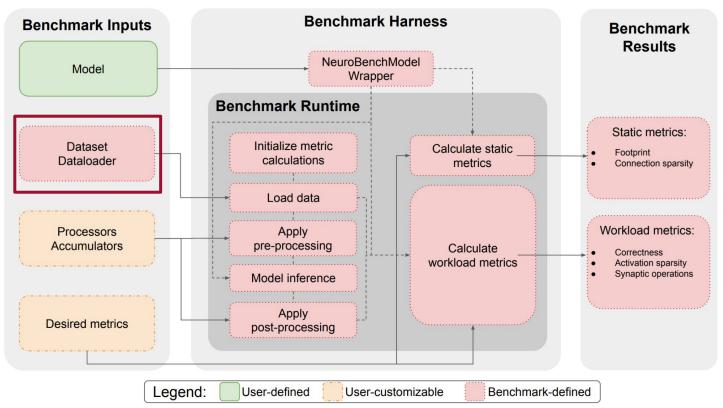
https://neurobench.readthedocs.io/en/latest/custom\_metrics.html

- Extend the abstract classes to define custom metrics
- Tutorial notebook and the docs above have examples of defining custom metrics





## Algorithm Track Harness - Datasets





## **Dataset Interface**

- Directly uses pytorch Dataset and DataLoader
- https://pytorch.org/tutorials/beginner/basics/data\_tutorial.html
- Native compatibility for dataset libraries like Tonic
  - https://tonic.readthedocs.io/en/latest/
- Benchmark run uses DataLoader to process batch-by-batch



## Included Datasets (with Examples)

https://github.com/NeuroBench/neurobench/tree/main/examples





Keyword Few-shot, Continual Learning

Event Camera Object Detection



Primate Motor Prediction



Chaotic Function Prediction



Google Speech Commands

DVS Gesture



IMU Activity Recognition





## **Keyword Few-shot Continual Learning**

#### Application

Continual expansion of multilingual keyword dictionary using few training examples.

#### Dataset

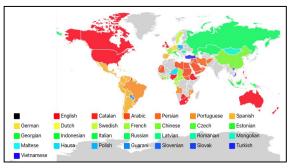
Multilingual Spoken Word Corpus (MSWC) keyword dataset (50 languages, over 6000 hours).

#### Task

Model base-trains on 100 keywords across 6 languages. Then, it successively undergoes 10-way, 5-shot learning sessions of 100 total new keywords from 10 new languages.

#### Correctness

Classification accuracy is measured after each session, on all previously learned classes.







# **Event Camera Object Detection**

#### **Application**

Real-time, energy-efficient / always-on automotive object detection, autonomous driving.

#### Dataset

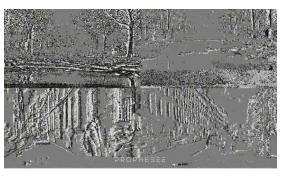
Prophesee 1MP Gen 4 Automotive Detection dataset (14.65 hours, 3.5TB uncompressed).

#### Task

Detect car, two-wheeler, pedestrian. [train / val / test] split of [11.2 / 2.2 / 2.2] hours.

#### Correctness

COCO mean average precision (mAP).







# **Primate Motor Decoding**

#### Application

Sensorimotor biophysiological emulation, for prosthetics and brain-computer interfaces.

#### Dataset

Motor cortex recordings of two non-human primates engaged in reaching tasks (touch screen).

#### Task

Use cortical recording time-series to predict fingertip reach velocity in X and Y dimensions.

#### Correctness

R<sup>2</sup> of predicted velocities against ground truth.

 $\begin{array}{c}\bullet \bullet \bullet \\ \bullet \bullet \bullet \\ \bullet \bullet \bullet \end{array}$ 





# **Chaotic Function Prediction**

#### Application

Dynamic time-series forecasting, (markets, climate, signals, etc.). Also a small dimensional problem useful for prototyping emerging resource-constrained hardware (i.e., mixed-signal).

#### Dataset

Mackey-Glass time series, one-dimensional non-linear time delay differential equation.

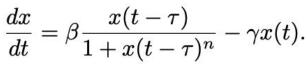
#### Task

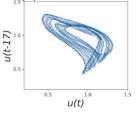
Train using the first half of the generated time series, then autonomously forecast the second half.

#### Correctness

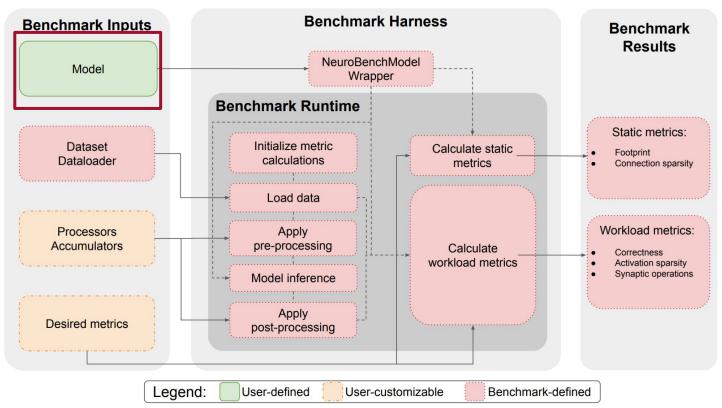
Symmetric mean absolute percentage error (sMAPE).







## Algorithm Track Harness - Model





## Model Interface

- General interface supports many frameworks
- Support in existing tool for connecting / collecting hooks
- Wrappers for TorchModel, SNNTorchModel
  - Includes boilerplate code for conventional execution
  - Verify that the execution applies correctly to your model

```
class NeuroBenchModel(ABC):
    def __init__(self)
    def __call__(self, batch)
    def __net__(self)
```

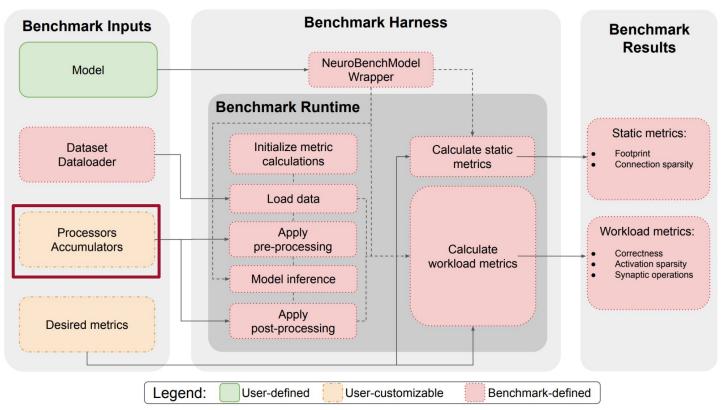


## Modules as Post-processing Blocks

- Custom NeuroBenchModel can be used to describe sequence of module pipelines
  - e.g., obj detection head/box\_coder: <u>https://github.com/NeuroBench/neurobench/blob/dev/examples/obj\_detection/benchmark.py#L</u> 52
- Currently, only module from \_\_\_\_net\_\_\_ will be hooked/measured



## Algorithm Track Harness - Data Processing





## **Data Processor Interfaces**

- Pre-processors applied to data before it is handed to model
- Post-processors take model output and transform to target shape
- Callables (e.g., lambda functions) matching interface can be used
- !! Processors not currently included in metrics evaluation, account for this in the limitations of the benchmarking study !!

class NeuroBenchPreProcessor(ABC):

def \_\_call\_\_(self, dataset: tuple[Tensor, Tensor]) ->
tuple[Tensor, Tensor]

class NeuroBenchPostProcessor(ABC):



def \_\_call\_\_(self, spikes: Tensor) -> Tensor

## How much of all this should you know?

- Depends on your algorithm
- Using standard/supported execution flows, should be generally automatic
- Using custom synaptic layers, neurons, you probably need to build custom components
- Your responsibility to ensure the benchmark is correct for your work

| Model               | $R^2$  | Footprint (bytes) | SynOps  |          |         |
|---------------------|--------|-------------------|---------|----------|---------|
|                     |        |                   | Dense   | Eff_MACs | Eff_ACs |
| ANN Baseline        | 0.5755 | 27160             | 6236    | 4970     | 0       |
| <b>SNN</b> Baseline | 0.5805 | 29248             | 7300    | 0        | 413     |
| AEGRU               | 0.6982 | 45520             | 54283   | 25316    | 0       |
| <b>RSNN-L</b>       | 0.6978 | 4833360           | 1206272 | 0        | 42003   |
| <b>RSNN-S</b>       | 0.6604 | 27144             | 13440   | 0        | 304     |
| ConvGRU             | 0.6209 | 26568             | 4947    | 627      | 247     |



## Benchmark Top - Putting Everything Together

B = neurobench.Benchmark(model, dataloader, preprocessors, postprocessors, [static\_metrics, workload\_metrics])

- Define all the pieces and pass them into Benchmark

results = B.run(args)

- Call run, returns dict of results



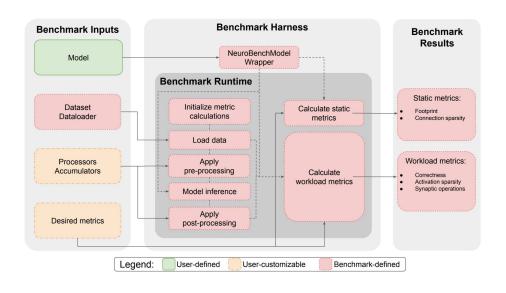
## Various QOL Features

- Log results to JSON
- Export model to NIR / ONNX
- Get batch-by-batch results (verbose)
- Run without output (quiet)
- Specify GPU to run on (device)
- Update the processors, dataset for successive runs (i.e., for continual learning)



## Harness Recap

- Simple/extensible
- Supports all official NeuroBench algorithmic benchmark tasks, and more
- You are ultimately responsible for correct benchmarking
- We are here to help you!





## How to be involved

#### - Using tasks for research

- Check out examples and open-source code (e.g., RSNN from ZenkeLab)
- Validate your results
- Extend using the standard interfaces (e.g., custom metrics)

#### - Development

- Check out CONTRIBUTING.md
- We meet every 2 weeks on Tuesdays to cover outstanding issues and next ideas
- Best way to contact us: File an issue, reach out via email
  - jyik@g.harvard.edu
  - benedetto.leto@studenti.polito.it



-

## Next directions

Crossing over between the algorithm and hardware tracks

- Metrics that are more representative of hardware performance
  - e.g., Eff. SynOPs currently treats activation sparsity and weight sparsity the same
- Developing virtual-machine backend for network execution
  - Evaluate mapping and routing strategies
  - Metrics like traffic load, core operation counts, memory usage

Connecting to non-Pytorch backends

Closed-loop (gym environment) tasks



## **Tutorial Outline**

Presentation

**Examples / Documentation Walkthrough** 

**Novel Benchmarking Notebook** 

- L<sup>2</sup>MU, a spiking neuron SSM

**Open Discussion** 



