Tutorial: Using the

NeuroBench Harness
NICE 2025

Benedetto Leto Jason Yik

~)NeuroBench

WV

Benchmarking under a common framework aligns research,
identifies best practices, and drives technological progress.

Inclusive Actionable Iterative

Algorithm Track

System Track

Dataset

Dataset

NeuroBench

Algorithm

Algorithm

3

Algorithm-System
i Co-Innovation

|
v

—t Algorithm + Hardware

Metrics

4

System-Informed
Complexity Metrics

System
Metrics

NeuroBench

9 , SynOps
Model R Footprint (bytes) Dense Eff MACs Eff ACs

ANN Baseline | 0.5755 27160 6236 4970 0
SNN Baseline | 0.5805 29248 7300 0 413

AEGRU 0.6982 45520 54283 25316 0

RSNN-L 0.6978 4833360 1206272 0 42003

RSNN-S 0.6604 27144 13440 0 304

ConvGRU 0.6209 26568 4947 627 247

Tutorial Outline

Presentation
Examples / Documentation Walkthrough
Novel Benchmarking Notebook

- L°MU, a spiking neuron SSM

Open Discussion

Tutorial Focus: The Algorithm Track Harness

Algorithm Track

- Hardware-agnostic benchmarking of cost metrics
- Open-source research tool (harness) for automatic benchmarking
- Inference-focused, no existing support for training benchmarking

What about hardware system benchmarking?

- Supporting research tooling will need a lot more hardware maturity
- Extensive specifications for application setups, measurement methods are

available for ASC and QUBO tasks, as well as official results from Loihi/Xylo
Available for you to compare your designs

Algorithm Track Harness

= 1 4

Automatic Datasets, Currently compatible Actively maintained
benchmarking for Data Processing, with torch-based and built for
neural network models Metrics libraries extensibility

pip install neurobench

codecov | 77% pypl v2.0.0 downloads |

Is it really automatic benchmarking?

- Not everyone uses the same research frameworks
- Norse, SpikingJelly, snnTorch, ...
- PyTorch-based, JAX-based, ...
- Continuous-time, analog, ...

- The tooling is as automatic as possible
- Simplicity and extensibility are the goals

- Simple enough for you to validate and customize for your
method

- Extensible to your research flow

Places to Find Information

Repository top: htips://github.com/NeuroBench/neurobench/tree/main

- Everything can be accessed from the README
- Dev branch: https://qgithub.com/NeuroBench/neurobench/tree/dev

Documentation website: https://neurobench.readthedocs.io/en/latest/

Example scripts (trained models):
https://github.com/NeuroBench/neurobench/tree/dev/examples

Leaderboard of benchmark results:
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst

https://github.com/NeuroBench/neurobench/tree/main
https://github.com/NeuroBench/neurobench/tree/dev
https://neurobench.readthedocs.io/en/latest/
https://github.com/NeuroBench/neurobench/tree/dev/examples
https://github.com/NeuroBench/neurobench/blob/dev/leaderboard.rst

Algorithm Track Harness

Benchmark Inputs Benchmark Harness Benchmark
(S . Results
Model ‘ . NeuroBenchModel @
ek ‘ Wrapper §
) P :
Benchmark Runtime | D, @000
-- Apecear e e S B S © Static metrics:
Dataset L Initialize metric | . Calculate static ‘e Footprint
Dataloader | calculations ' metrics " Connection sparsity
—i—» Load data & E
Processors : Apply i : : - Workload metrics:
Accumulators i pre_p rocessmg ii____ _.é Calculate —,) Correctness
| e i o . workload metrics ‘e Activation sparsity
== Model inference i : ‘e Synaptic operations
‘ . - App|y _—i
Desired metrics —’g post-processing - L :
l

Algorithm Track Harness - Metrics

Benchmark Inputs Benchmark Harness Benchmark
(i S 5 Results
Model | . NeuroBenchModel @
: Wrapper i
Benchmark Runtime |
-- .: L o o, " Static metrics:
Dataset : i Initialize metric | . Calculate static ‘o oot
Dataloader | calculations ; metrics ™ Bl " e Connection sparsity
——> Load data A
Processors : Apply i : : - Workload metrics:
Accumulators i pre_p rocessmg EJ:_ e _.E Calculate 7 _,5 . Correctness
UGN S - - workload metrics " Activation sparsity
‘-~ Model inference | {2 eneicepeatone
. . - Apply _—i
Desired metrics 4’2 post-processing - L :
l

Algorithm Track Metrics: No influence of runtime platform

Static Metrics: t“
Footprint
Workload
Metrics:
Accuracy

Connection
Sparsity

#&4
Activation
Sparsity

Feature, not
meastured

Execution
Rate*

<

Synaptic
Operations

o0
Overview of Included Metrics

- Footprint
- Static, Memory requirement of parameters and buffers
- Connection sparsity
- Static, Ratio of zeroes in model weights
- Accuracy
- Workload, Task-defined
- Activation Sparsity
- Workload, Ratio of zeroes in neuron activations (LIF, ReLU)
- Synaptic Operations
- Workload, Number of times an activation triggers with a weight (avg over all forward passes)
Dense: accounts for all operations, even zero ops
Effective MACs: non-zero ops only, for non-binary activations

Effective ACs: non-zero ops only, for binary activations
- I Expensive to calculate !! Get rid of this metric for faster benchmark run (3x)

Formal metric specifications are in paper

ool
Static Metrics ‘ %

Connection

Footprint Sparsity

- Evaluate fixed properties of the model, not data-dependent
- Computed once per benchmark run

class StaticMetric (ABC) :
def call (self, model: NeuroBenchModel) -> float

Workload Metrics @ ﬁi% EZ

Activation Synaptic
Accuracy Sparsity Operations

- Data dependent, computed batch-by-batch
- By default, the metric is averaged over the batch size
- e.g., classification accuracy
- Also support metrics which use more complex accumulations
- e.g., mAP (object detection), R*2 (regression)
- Utilizes hooks (callback functions) in order to extract per-layer (per-pytorch

module) information
- e.g., activation sparsity, synaptic operations

Standard Workload Metric: Averaged over Batches

- In addition to the model, the interface uses the predictions and the batch data
(processed data and targets)
- Hooks are necessary to extract per-module information from the execution

class WorkloadMetric (ABC) :
def init (self, requires hooks: bool = False)
def call (self, model: NeuroBenchModel, preds: Tensor, data:
tuple[Tensor, Tensor]
) —> float

Accumulated Workload Metric: Define how to calculate

__init__initializes state variables

__call__ updates the state variables for each batch
compute() returns the current metric value

reset() resets the state, useful for successive runs

class AccumulatedMetric (WorkloadMetric) :
def compute(self) -> float
def reset(self) -> None

Accumulated Metric Example: R"2

https://qgithub.com/NeuroBench/neurobench/blob/main/neurobench/metrics/worklo
ad/r2.py

https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py
https://github.com/NeuroBench/neurobench/blob/main/neurobench/metrics/workload/r2.py

Developing Custom Metrics

https://neurobench.readthedocs.io/en/latest/custom metrics.html

- Extend the abstract classes to define custom metrics
- Tutorial notebook and the docs above have examples of defining custom

% i v

Neuron Robustness Fan-out
Dynamics

https://neurobench.readthedocs.io/en/latest/custom_metrics.html

Algorithm Track Harness - Datasets

Benchmark Harness

Benchmark Inputs Benchmark
(S Results
Model NeuroBenchModel @
Wrapper i
Benchmark Runtime |
"""""""""""""""""""""" irm_-._:-_u_-»_:»_»-_-._:._.«_--_f._.i»_:._«-_-»_:-_"_E R T Static metrics:
Dataset i Initialize metric | Calculate static Footprint
Dataloader i calculations ! metrics Connection sparsity
i Load data ,_: E
Processors : Apply i ~ Workload metrics:
Aeemiliaton U Calculate Correctness
1 L o g workload metrics Activation sparsity
‘- Model inference | 5 SiRdutic opetations
. . - App|y —_i
Desired metrics ' post-processing
l
[Legend: | |User-defined User-customizable | ‘Benchmark-defined]

Dataset Interface

- Directly uses pytorch Dataset and DatalLoader
- https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

- Native compatibility for dataset libraries like Tonic
https://tonic.readthedocs.io/en/latest/

- Benchmark run uses DatalLoader to process batch-by-batch

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://tonic.readthedocs.io/en/latest/

Included Datasets (with Examples)

https://qgithub.com/NeuroBench/neurobench/tree/main/examples

3

Keyword Few-shot,
Continual Learning

=\

Event Camera
Object Detection

+

N
\ &

DVS Gesture

Primate Motor

Google Speech
Commands

o,

-,b _,\/\/\,\r

Chaotic Function
Prediction

O

Prediction

WV,

IMU Activity
Recognition

https://github.com/NeuroBench/neurobench/tree/main/examples

Keyword Few-shot Continual Learning

Application

Continual expansion of multilingual keyword dictionary using few training examples.

Dataset

Multilingual Spoken Word Corpus (MSWC) keyword dataset (50 languages, over 6000 hours).

Task

Model base-trains on 100 keywords across 6 languages. Then, it successively undergoes 10-way,

5-shot learning sessions of 100 total new keywords from 10 new languages.

Correctness

Classification accuracy is measured after each session, on all previously

learned classes.

Eil ";i;

3 N ! <

\ >

[} WEngish @Catalan @ Arabic [l Persian
German Dutch Swedish | French Chinese
Georgian Indonesian [Italian Russian Latvian

Portuguese
Czech

Romanian

i [Slovak

-
» !
Spanish
Estonian

Mongolian
W Turkish

>

~/m—ra\-

S

Event Camera Object Detection ¢

Application

Real-time, energy-efficient / always-on automotive object detection, autonomous driving.

Dataset
Prophesee 1MP Gen 4 Automotive Detection dataset (14.65 hours, 3.5TB uncompressed).

Task

Detect car, two-wheeler, pedestrian. [train / val / test] split of [11.2 /2.2 / 2.2] hours.

Correctness
COCO mean average precision (mAP).

Primate Motor Decoding

Application

Sensorimotor biophysiological emulation, for prosthetics and brain-computer interfaces.

Dataset
Motor cortex recordings of two non-human primates engaged in reaching tasks (touch screen).

Task

Use cortical recording time-series to predict fingertip reach velocity in X and Y dimensions.

Correctness
R? of predicted velocities against ground truth.

Chaotic Function Prediction

Application

Dynamic time-series forecasting, (markets, climate, signals, etc.). Also a small dimensional problem
useful for prototyping emerging resource-constrained hardware (i.e., mixed-signal).

Dataset
Mackey-Glass time series, one-dimensional non-linear time delay differential equation.

Task

Train using the first half of the generated time series, then autonomously forecast the second half.

Correctness
Symmetric mean absolute percentage error (sMAPE).

_u(t17)

dzx z(t — 1) T’
= = — vz ().
prilel g Al AV

Algorithm Track Harness - Model

Benchmark Harness

Benchmark
(LI Results
Model NeuroBenchModel @
Wrapper i
Benchmark Runtime |
-- e Static metrics:
Dataset : i Initialize metric | Calculate static Footprint
Dataloader | calculations ' metrics Connection sparsity
i Load data : E
Processors : Apply i : - Workload metrics:
GocUiUIElons i pieprocessing e Calculatt 4 Comectness
RN R | workload metrics " Activation sparsity
L__,; Model inference i { C Synaptic operations
. . - App|y i
Desired metrics 4’2 post-processing || g
l

Model Interface

- General interface supports many frameworks
- Support in existing tool for connecting / collecting hooks
- Wrappers for TorchModel, SNNTorchModel

- Includes boilerplate code for conventional execution
- Verify that the execution applies correctly to your model

class NeuroBenchModel (ABC) :
def init (self)
def call (self, batch)
def net (self)

Modules as Post-processing Blocks

- Custom NeuroBenchModel can be used to describe sequence of module
pipelines
- e.g., obj detection head/box_coder:

https://qithub.com/NeuroBench/neurobench/blob/dev/examples/obj detection/benchmark.py#L
52

- Currently, only module from _ net will be hooked/measured

https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52
https://github.com/NeuroBench/neurobench/blob/dev/examples/obj_detection/benchmark.py#L52

Algorithm Track Harness - Data Processing

Benchmark Inputs Benchmark Harness Benchmark
‘ S 5 Results
: NeuroBenchModel @
Model | § Wrapper i E
Benchmark Runtime '
--- : Ao I S " Static metrics:
Dataset E Initialize metric i : Calculate static o Footprint
Dataloader : - calculations : metrics ; ‘e Connection sparsity
—i—» Load data = E
Processors J_; '''''''''''' Apply """"""""""" i : : V Workload metrics:
ACCumUIatOrS E pre_proceSSIng 2 i i - ->§ CalCUIate —> . Correctness
| e R o . workload metrics ‘e Activation sparsity
‘-~ Model inference ! ;e Synaptic operations
. . . Apply __i
Des]red metrics ' pOSt—proceSSing : B o .
l

Data Processor Interfaces

- Pre-processors applied to data before it is handed to model

- Post-processors take model output and transform to target shape

- Callables (e.g., lambda functions) matching interface can be used

- ' Processors not currently included in metrics evaluation, account for this in
the limitations of the benchmarking study !!

class NeuroBenchPreProcessor (ABC) :
def call (self, dataset: tuple[Tensor, Tensor]) ->
tuple[Tensor, Tensor]

class NeuroBenchPostProcessor (ABC) :
def call (self, spikes: Tensor) -> Tensor

How much of all this should you know?

- Depends on your algorithm

- Using standard/supported execution flows, should be generally automatic

- Using custom synaptic layers, neurons, you probably need to build custom
components

- Your responsibility to ensure the benchmark is correct for your work

9 , SynOps
Model R Footprint (bytes) Dense Eff MACs Eff ACs

ANN Baseline | 0.5755 27160 6236 4970 0
SNN Baseline | 0.5805 29248 7300 0 413

AEGRU 0.6982 45520 54283 25316 0

RSNN-L 0.6978 4833360 1206272 0 42003

RSNN-S 0.6604 27144 13440 0 304

ConvGRU 0.6209 26568 4947 627 247

Benchmark Top - Putting Everything Together

postprocessors, [static metrics, workload metrics])

B = neurobench.Benchmark (model, dataloader, preprocessors,

- Define all the pieces and pass them into Benchmark

results = B.run (args)

- Call run, returns dict of results

Various QOL Features

- Log results to JSON

- Export model to NIR / ONNX

- Get batch-by-batch results (verbose)

- Run without output (quiet)

- Specify GPU to run on (device)

- Update the processors, dataset for successive runs (i.e., for continual
learning)

Harness Recap

- Simple/extensible

- Supports all official NeuroBench algorithmic benchmark tasks, and more
- You are ultimately responsible for correct benchmarking

- We are here to help you!

Benchmark Inputs Benchmark Harness

Benchmark
B EE SN R " Results
Model ‘ : NeuroBenchModel @
: Wrapper ;
Benchmark Runtime |
""" :) »7--7-7 S T-T-Tj; [S i Static metrics:
Dataset] i Initialize metic ¢ | . Calculate static ‘o Footprint
Dataloader] calculations | | [T metrics i e Connectionsparsity
L Load data B
Processors I ;" Workload metrics:
el Sl : ;L..»,»: Calculate 4 Comectness i
3 o) . . workload metrics e Activation sparsity E
-+ Model inference ‘ : : 0 SpERISCED
' . L - Apply
Desired metrics . post-processing R —
S —

[Legend: [User-defined | User-customizable 'Benchmark-deﬁnedJ

How to be involved

- Using tasks for research

- Check out examples and open-source code (e.g., RSNN from ZenkelLab)
- Validate your results
- Extend using the standard interfaces (e.g., custom metrics)

- Development
- Check out CONTRIBUTING.md
- We meet every 2 weeks on Tuesdays to cover outstanding issues and next ideas

- Best way to contact us: File an issue, reach out via email

- jvik@g.harvard.edu
- benedetto.leto@studenti.polito.it

mailto:jyik@g.harvard.edu
mailto:benedetto.leto@studenti.polito.it

Next directions

Crossing over between the algorithm and hardware tracks

- Metrics that are more representative of hardware performance
- e.g., Eff. SynOPs currently treats activation sparsity and weight sparsity the same

- Developing virtual-machine backend for network execution

- Evaluate mapping and routing strategies
- Metrics like traffic load, core operation counts, memory usage

Connecting to non-Pytorch backends

Closed-loop (gym environment) tasks

Tutorial Outline

Presentation
Examples / Documentation Walkthrough

Novel Benchmarking Notebook

- L°MU, a spiking neuron SSM

Open Discussion

