Co-funded by
the European Union

EBRAINS

)

EBRAINS Software Distribution

EBRAINS developer's day

Eleni Mathioulaki (on behalf of the ESD team)

EBRAINS 2.0 has received funding from the European Union's Research and Innovation Program Horizon Europe under Grant Agreement No. 101147319.

=
=]
Q
=

Ambition - a common software ecosystem

nded by

=

f

w
&
=

Co

' = modern scientific tools: numerous dependencies on external libraries
* code reuse - reduces duplication, increases efficiency
* BUT increases complexity of managing sw environments
° maintaining interoperability: integration effort

° updates create constant compatibility challenges — ongoing effort

EBRAINS 2.0

* technical dept

° non-reproducible environments

£ EBRAINS

Q

Ambition - a common software ecosystem

Co-funded by
the European Union

$ apt-get install python3-pynn

...

The following NEW packages will be installed:
binutils binutils-common binutils-x86-64-linux-gnu bzip2 cpp cpp-12 file fontconfig-config fonts-dejavu-core g++ g++-12 gcc gcc-12
ibverbs-providers javascript-common krb5-locales 1libabsl120220623 libaecO libaom3 libasan8 libatomicl libavifl5 libbinutils
libblas3 libbloscl libboost-dev libboostl.74-dev libbrotlil 1libbsdO libc-dev-bin libc-devtools libc6-dev libccl-0 liberypt-dev
libctf-nobfd0 libctf0 libcurl4 libdavldé libde265-0 libdeflateO libevent-core-2.1-7 libevent-pthreads-2.1-7 libexpatl
libexpatl-dev libfabricl libfontconfigl libfreetype6é 1libfribidi0 libgavl-1 libgcc-12-dev libgd3 libgdbm-compat4 libgdbmé6
libgfortran5 1libglib2.0-0 libglib2.0-data libgompl libgprofng0 libgraphite2-3 libgssapi-krb5-2 libharfbuzzOb 1libhdf5-103-1
libheifl libhwloc-plugins libhwlocl5 libibverbsl libicu72 libimagequant0 1libisl23 libitml libjansson4 libijbig0 libjpeg62-turbo
libjs-jquery libjs-sphinxdoc libjs-underscore libk5crypto3 libkeyutilsl 1libkrb5-3 libkrb5support0 liblapack3 1liblbfgsb0 liblcms2-2
liblerc4 liblsan0 liblzo2-2 libmagic-mgc libmagicl libmpc3 libmpfr6é libmunge2 libnghttp2-14 1libnl-3-200 libnl-route-3-200

o
~N libnsl-dev libnsl2 libnumal libopenblas-dev libopenblas-pthread-dev libopenblas0 libopenblasO-pthread libopenjp2-7 libopenmpi3
%; libpciaccess0 libperl5.36 libpmix2 libpngl6-16 libpsm-infinipathl libpsm2-2 libpython3-all-dev libpython3-dev libpython3-stdlib
< libpython3.11 libpython3.11l-dev libpython3.1ll-minimal libpython3.11l-stdlib libquadmathO libragqmO libravleO librdmacml librtmpl
% libsnappylv5 libssh2-1 libstdc++-12-dev libsvtavlencl libsz2 libtiff6 libtirpc-common libtirpc-dev libtirpc3 libtsan2 libubsanl
e libucx0 libwebp7 libwebpdemux2 libwebpmux3 1libx11-6 libxll-data 1ibx265-199 libxau6 libxcbl libxdmcp6 libxext6 libxml2 libxnvctrlO
libxpm4 libxsimd-dev libyuv0 linux-libc-dev mailcap manpages manpages-dev media-types mime-support netbase neuron
ocl-icd-libopencll perl perl-modules-5.36 python-babel-localedata python-tables-data python3 python3-all python3-all-dev
python3-babel python3-beniget python3-cheetah python3-decorator python3-dev python3-distutils python3-gast python3-jinja2
python3-lazyarray python3-1lib2to3 python3-markupsafe python3-minimal python3-neo python3-neuron python3-numexpr python3-numpy
python3-olefile python3-packaging python3-pil python3-pkg-resources python3-ply python3-pynn python3-pythran python3-quantities
python3-scipy python3-tables python3-tables-1ib python3-tz python3.11 python3.ll-dev python3.1ll-minimal rpcsvc-proto
shared-mime-info xdg-user-dirs xz-utils zliblg-dev
0 upgraded, 200 newly installed, 0 to remove and 0 not upgraded.
Need to get 187 MB of archives.
n After this operation, 941 MB of additional disk space will be used.
7=~ Do you want to continue? [Y/n]
2
L

N

@

Current ESD Dependency Graph

uojun ueadoin3 ay}
Aq papunj-09

)| ,,
. |
32 i
:
i
;
. |
: ,_
: ,
s g |
Jii _
-y
r.,,.,,u” a
Rl
i's
s N
|
m“ :
i
|
ST |
! 3 o
il
‘ i
i
i LI |
1 | mA
i
i |
{ W
i h
! |
oAb ¢ |
< il
7 _

0°¢ SNIVy43d

SNIVYE3 %«W

Dependency Graph

uojuf ueadoinz ayy
£Aq pepuny-0p

0'¢ SNIVd4d

SNIvy43

@

Co-funded by
the European Union

EBRAINS 2.0

BRAINS

@

The EBRAINS Software Distribution

Q /7”5{5.
S Tole,
EBRAINS o S} b % /%%
9%, ” %, X 108,
. S ISR X /-/_@
= simulator engines, data analysis and visualisation tools, client %’fg‘% 0,;3,;’/ i%‘,j,;
. . . _ %
libraries of EBRAINS services S, 5%, T B
NS0 2,5 -0 % &
. . & K %or S, Q90 3 R\
= 60+ science tools need to be available to users & 20,7, QL SN KE
RO C/@c?/'é‘?/f P W08 O @ R
" . 2 20,0~ LN 0 RS OS5 72
= ~800 dependencies in total & 0% SR @i@@‘o‘?ﬁf NG
. . : : - B 0 SRR
= different target environments need different configurations: @o&g\%@%@&oﬂgﬁ\;\%«
— N R o)
EBRAINS Lab, optimised installations on different HPC sites ¢ \\A@?Q«”Q\\,Q@%j@?ﬁ
Q 0 %

Unified, consistent EBRAINS software ecosystem containing:
all EBRAINS tools

the optimal tree of all their (transient) dependencies

EBRAINS workflows (software dependencies & tests)

soon possibly services

Co-funded by
the European Union

EBRAINS 2.0

)

% EBRAINS

The EBRAINS Software Distribution

Goals:

= automated dependency management
= ensuring consistency (no conflicts)

= reproducible software environment

= tool unit/interoperability testing

= versioned, tested, validated releases on
structured schedule

* transparency to users: EBRAINS kernels
in the Lab, EBRAINS modules on HPC
systems

Development and Release Flow

Co-funded by
the European Union

Developer
' v = Official ESD repository:
EBRAINS
Gitlab .
Dev B o = Spack use_d to deflne_thg softwgre stack,
environment —— dependencies and build instructions:
l e T spack create <url>
> N - MR in official ESD repository
<
2 = automated build tests triggered on each
commit and MR
= acceptance criteria:
* passing build test pipeline
" * passing Software Quality Checklist
@

https://gitlab.ebrains.eu/ri/tech-hub/platform/esd/ebrains-spack-builds
https://gitlab.ebrains.eu/ri/tech-hub/platform/esd/ebrains-spack-builds

Co-funded by
the European Union

EBRAINS 2.0

EBRAINS

@

Getting software into the ESD

= Spack package

* versions

* versioned dependencies
* variants
* patches

* build logic

from spack.package import *

class PyPynn{PythonPackage):

"""A Python package for simulator-independent specification of neuronal

network models

homepage = "http://neuralensemble.org/PyNN/"

pypi = "PyNN/PyNN-0.10.0.tar.gz"

git = "https://github.com/NeuralEnsemble/PyNN.git"

maintainers = ["apdavison"]

version("0.12.3", sha256
version("0.12.2", shaZ
version("0.12.1", sha

"el96T9055c46Te5c0e237491815d16dca8db9be599a226eellfab7605cabl53d")
"8039b68e3e5798b537038c249dcd42c027bd63T9eccO015c82f1f88bd30dTa28a9")
"fefd49cc601032565341702c5c982cb805bcOcclbde75166achlb7f8cl79adfda")

version("0.11.0", shaZ56="eabbef28lefabBl80c8b31ffb65984154216c68464db363a5c09832fec91f952")

patch{"pynn-0.12.2-arbor-0.9.0.patch",

variant("mpi", default=False, descrip

depends_on("python@3.7:",
depends_on("python@3.8:",
depends_on("py-setuptools”,
depends_on("py-setuptools@6l:",
depends on("py-numpy@l.18.5:",
depends_on{"py-mpidpy",

depends_on("py-quantities@®.12.1:",

depends_on("py-lazyarray@d.5.2:",
depends_on("py-neo@?.11.0:",
depends_on({"py-libneuroml@®.4.1:",
depends_on{"py-morphio",
depends_on{"neuron@8.l:+python",
depends_on("nest@3.3:3.4+python",
depends_on("nest@3.4:+python",
depends_on("py-brian2",
depends_on("arbor@®.8.1:+python",
depends_on("arbor@®.9.0:+python",

'@@.11.0:")
e=("build"))
o=("build"), when="
{("run", "test")}, w
{"run", "test"), w
e=("run", "test"), w
e=("run", "test"), w
("run", "test"}, w
{"run", "test"), w
e=("run", "test"), w
e=("run", "test"), w
{"run", "test"), w
("run", "test"), w
e={"run", "test"}))
e=("run", "test"), when
type= “test"), when

,|—w—"ﬂﬂ 10.0: G 10.1")

when="@0.12.1:0.12.2")

tion="Enable MPI support")

11.0")

.1:0.12.2")
.3:")

Development and Release Flow

Co-funded by
the European Union

Developer
' v = Official ESD repository:
EBRAINS
itla .
. Gi_ s = Spack used to define the software stack,
emvironment — dependencies and build instructions:
l e T spack create <url>
> N - MR in official ESD repository
<
2 = automated build tests triggered on each
commit and MR
= acceptance criteria:
* passing build test pipeline
" * passing Software Quality Checklist
@ 10

https://gitlab.ebrains.eu/ri/tech-hub/platform/esd/ebrains-spack-builds
https://gitlab.ebrains.eu/ri/tech-hub/platform/esd/ebrains-spack-builds

Software Quality Checklist

Co-funded by
the European Union

EBRAINS Software Quality Guidelines

Alan B Stokes” Daniel Keller” Daviti Gogshelidze” Dennis Terhorst?

Eric Miiller® George Andreou" James Gonzalo King®
Orfeas Aidonopoulos® Sandra Diaz" Thorsten Hater’
Contents
Q
o Executive Summary 2
i S
=z
< Introduction 2
o=
E Software Development Best Practices 3
Dependency Management 4
Software Project Management G
Version Control 8
Testing 10
Documentation 14
Code Quality 17
% Deployment Plans and Continuous Deployment (CD) 19
< _—
% Licensing 20

w https://drive.ebrains.eu/d/6061531326d048308823/ 11

https://drive.ebrains.eu/d/6061531326d048308823/

Software Quality Checklist

Checklist

Co-funded by
the European Union

This section can act as a quick reference, be used for ESQ-guideline compliance checks, or
overview for developers which aspects of software quality may need consideration.

To check/validate compliance with this guideline, the following checklist should provide a quick
and brief overview. Ideally the validation can be technically facilitated by frameworks like the
Core-Infrastructure Badge.

The following items should provide a quick overview for developers and for validating guideline
compliance of a tool.

The requirement levels of these points are marked by color:

= Passing EBRAINS Software Quality checks: all required items fulfilled.

e Silver EBRAINS Software Quality level: all required and <1100 e-to items fulfilled.
Q » Gold EBRAINS Software Quality level: all required, =uocested and optional items fulfilled.
(@
2 Metadata
< = P: to be filled by Package manager [developer
g » R: to be filled by Release manager [technical coordination
L
Submitter(P) [| Datel | (vyyy-mm-dd)
Software(P)
Version(P)
Curator (R) [| Date| | (vyyy-mm-dd)
Rewit®) []
Dependency Management
] [deps-well-defined] Software package-, API-, data-type- and service dependencies must be
explicitly specified in terms of version constraints and feature variants. (bool)
n] [deps-per-release] Sof tware package-, API-, data-type- and service dependency information
Z must be included in every release. (bool)
é L] [deps-not-manual] Software package dependencies should be tracked and handled by a soft-
m ware tool. (bool)

w https://drive.ebrains.eu/d/6061531326d048308823/ 12

https://drive.ebrains.eu/d/6061531326d048308823/

>
o
o
[T}
°
c
=
b
[=]
(&)

LR the European Union

EBRAINS 2.0

EBRAINS

——

(@

Development and Release Flow

Docker Registry

site-specific configs [+

: package descriptions| :

* Maintainer/DevOps l l

images

ESD Spack repository

Common
modularized
build flow

g

EBRAINS software
on shared NFS
partition

viv

!

ESD HPC
container

v

ESD
container

= Official ESD repository:

= centralized process, coordinated and
performed in GitLab: fully
automated (testing and deployment)
flow using GitLab CI

= site-specific configurations decoupled
from ESD definition

13

https://gitlab.ebrains.eu/ri/tech-hub/platform/esd/ebrains-spack-builds
https://gitlab.ebrains.eu/ri/tech-hub/platform/esd/ebrains-spack-builds

Co-funded by
the European Union

EBRAINS 2.0

BRAINS

@

Development and Release Flow

Dev
environment

—0®

Runtime
environment

Developer

v

Component
Spack package al

Gitlab

EBRAI NSJ

i | site-specific configs

: package descriptions

ESD Spack repository

Common
modularized
build flow

Maintainer/DevOps

OKD Container >
images

||

Docker Registry

EBRAINS software
on shared NFS
partition

k8s

End-User

g

[M] Notebook
2 & e & e

Python 3 EBRAINS_release EBRAINS-22.07 EBRAINS-22.10 EBRAINS-23.02
(ipvkernel) _v0.1_.202109
EBRAINS-23.06 EBRAINS-23.09 EBRAINS-24.04 EBRAINS- R 363

experimental

& & & & &

R-EBRAINS-23.02 R-EBRAINS-23.06 R-EBRAINS-23.09 R-EBRAINS-24.04 R-EBRAINS-

= EBRAINS Lab

* Interactive JupyterLab environment

= HPC systems

* high performance and scalability

= EBRAINS "laptop" containers

* seamless user-deployed workspaces

14

c
S
[=
=2
21 Development and Release Flow
28
2
38
' Developer
o Component
Spack package al
EBRAINS
Gitlab Common
PEL LT LT TP PP PP PP PP PP . modularized
Dev —— i ESD Spack repository : build flow
environment
l | site-specific configs |4 L-
(@) -—I package descriptions
(@] d H
m EEEEEEEESEEEEEEEEEEEEEEREEEE -
=z °
< ® Maintainer/DevOps l
[a)
L
Build images
environment t
Docker Registry .
on shared NFS
partition
®
™
" Runtime
Z environment
< k8s
&
End-User

@

Co-funded by
the European Union

EBRAINS 2.0

EBRAINS

@

OFFICIAL

RELEASE

DEPLOYMENT
on a quarterly basis

DEVELOPMENT
creation of Spack
packages by COs

Official ESD Releases

« EBRAINS official release

° on a quarterly basis (older releases remain available) TESTING

automated
RELEASE

* "release candidate" created for testing by end users before each new
EXPERIMENTAL CYCLE

official release SOE
DEPLOYMENT TC REVIEW
on a weekly approvalby TC

 EBRAINS experimental release

COs REVIEW

* on a weekly basis (replaced by the next experimental release) STESTING | DEPLOYMENT

environment

(DEV)
evenviron

* not as verified or tested: bleeding edge delivery of new tool features

EBRAINS § EBRAINS § EBRAINS § EBRAINS | EBRAINS | EBRAINS J experimental
22.10 23.02 23.06 23.09 24.04 25.02 release

9 EBRAINS 21 EBRAINS 26 EBRAINS 36 EBRAINS 55 EBRAINS 59 EBRAINS 61 EBRAINS 64 EBRAINS latest versions

tools tools tools tools tools tools tools tools (weekly)

available in EBRAINS Lab (CSCS and JSC) in Python kernels
automated, centralised build and deployment process

available also in R kernel in EBRAINS Lab
automated deployment and unit testing

deployed on ICEI HPC sites

16

Co-funded by
the European Union

EBRAINS 2.0

£ EBRAINS

ESD testing - Motivation

Reliability

° guarantee that tools function as expected

Consistency

° ensure updates or changes do not introduce conflicts/instability

Interoperability

* confirm that tools and dependencies work seamlessly together in the ecosystem

Future-Proofing

* identify and address issues proactively, sustain the ecosystem over time

User Confidence

* provide researchers with a verified, ready-to-use system that “just works.”

17

EBRAINS 2.0

BRAINS

@

ESD testing

What?

= tools: verify functionality of individual tools, defined by tool maintainers

= workflows: verify integration and consistency between tools

When?
= post-installation tests

° immediately after installation

* confirm proper setup and reproducibility in each environment/deployment
= periodic tests

° regular, scheduled tests

* ensure stability and compatibility over time (including external system interactions)

18

Co-funded by
the European Union

EBRAINS 2.0

BRAINS

(Z((o

ESD unit post-install tests

= validate individual tools
= automated in EBRAINS GitLab CI: catch issues early

= cross-platform: ensure tools work consistently across local, Lab, and HPC environments

Implementation:

= Spack build-time tests

= pre-defined tests per build system (e.g. python import tests, make installcheck)

= executed when spack install --test root

= run in the package’s build environment

19

https://spack.readthedocs.io/en/latest/packaging_guide.html

Co-funded by
the European Union

EBRAINS 2.0

BRAINS

w

@

ESD unit post-install tests

@run_after('install"') @run_after('install')
@on_package_attributes(run_tests=True) @on_package_attributes(run_tests=True)
def install_test(self): def check_install(self):

run tests here: ppu_gcc = which('powerpc-ppu-gcc')

pytest = which('pytest') ppu_gcc('--version')

pytest()

@run_after("install", when="+python")
@on_package_attributes(run_tests=True)
def install_test(self):

python("-c", "import arbor")

@Erun_after('install')
@on_package_attributes(run_tests=True)
def check_install(self):

. ft 'install'
make("test.serial") Grun_after(install’)

@on_package_attributes(run_tests=True)
def install_test(self):
python('-c', 'import neuron; neuron.test(); quit()')

20

>
o
o
[T}
°
c
=
b
[=]
(&)

ORI the European Union

EBRAINS 2.0

EBRAINS

——

@

ESD workflow packages

Spack "meta-packages”, named "wf-{workflow name}"
Represent multi-tool EBRAINS workflows

° e.g., hotebooks, scripts, multi-site/UNICORE/CWL workflows etc
Workflow package definitions include:

* all the software dependencies of the workflow (may include EBRAINS and external tools)

* well-defined tests

Motivation:
* structured representation of tool interdependencies
* facilitates deployment of workflows

* facilitates testing of workflows (incl. possible service dependencies)

21

Co-funded by
the European Union

EBRAINS 2.0

EBRAINS

——

@

ESD benchmark packages

Named "bm-{benchmark name}"?

Represent real-world EBRAINS tool benchmarks
Benchmark package definitions include:

° benchmark code

¢ all the additional dependencies of the benchmark
* (if available) expected results

* (possibly) configurable parameters

Motivation:
* measure performance (esp. on HPC containers/deployments)

* smoke tests

22

ESD workflow packages

|frow spack import

Co-funded by
the European Union

class WfMultiAreaModel () :
"""Meta-package to collect all dependencies of the Multi-Area-Model.""'

homepage="https://inm-6.github.io/multi-area-model/
git = "https://github.com/INM-6/multi-area-model
maintainer = ["terhorstd", "didi-hou", "rshimoura"]

.0 tag="v1.2.0")
.1 tag="v1.1.1")
.1.0 tag="v1.1.0")
naster", branch="master")

py-nested-dict", type=("run", "test"))

nest", type=("run", "test"))
py-neo", type=("run", "test"))
py-elephant", type=("run", "test"))
r-aod", type=("run", "test"))
py-notebook", type=("run", "test"))

Q
~
%)
<
<
o
o
o

(self, spec, prefix):
(".", (prefix, "notebooks"))

helper functions

("install")
(run_tests=
(self):
((.stage.path, ".install time tests"))
.stage.path, ".install time tests"), (.prefix, '.build'))

.test suite.stage, .spec. ("out-{name}-{version}-{hash:7}")))

Testing the ESD

Co-funded by
the European Union

post-installation tests periodic (stand-alone) tests

-)

individual tool tests workflow tests scheduled tests

o
N
Z « test usability and test correct execution « additional scheduled execution
% correct installation of workflow of workflow tests
- of tools and interoperability « weekly (daily if needed?)
» defined by developers of tools * may also include testing of
» defined by workflow external services, underlying
maintainer systems
triggered by any update in the package/workflow triggered periodically
or one of its dependencies (e.g. weekly or more often)
2
&
v
@ 24

Co-funded by
the European Union

EBRAINS 2.0

% EBRAINS

The team / Get Involved

= EBRAINS Software Distribution: Integration and Quality WG

* Tuesday, 11:00 CEST

* all ESD-related topics: integration and testing aspects, software
quality, (non-HPC) container images, workflow packages, etc

= EBRAINS Software Distribution on HPC WG
° Friday, 10:00 CEST

* all ESD HPC-related aspects such as deployment, (performance)
optimization and packaging

= Rocketchat channel:

25

https://chat.ebrains.eu/channel/ebrains-releases

EBRAINS EBRAINS 2.0

)

Thank you!

Co-funded by
the European Union

EBRAINS 2.0 has received funding from the European Union's Research and Innovation Program Horizon Europe under Grant Agreement No. 101147319.

	Slide 1: EBRAINS Software Distribution
	Slide 2: Ambition - a common software ecosystem
	Slide 3: Ambition - a common software ecosystem
	Slide 4: Current ESD Dependency Graph
	Slide 5: Dependency Graph
	Slide 6: The EBRAINS Software Distribution
	Slide 7: The EBRAINS Software Distribution
	Slide 8: Development and Release Flow
	Slide 9: Getting software into the ESD
	Slide 10: Development and Release Flow
	Slide 11: Software Quality Checklist
	Slide 12: Software Quality Checklist
	Slide 13: Development and Release Flow
	Slide 14: Development and Release Flow
	Slide 15: Development and Release Flow
	Slide 16: Official ESD Releases
	Slide 17: ESD testing - Motivation
	Slide 18: ESD testing
	Slide 19: ESD unit post-install tests
	Slide 20: ESD unit post-install tests
	Slide 21: ESD workflow packages
	Slide 22: ESD benchmark packages
	Slide 23: ESD workflow packages
	Slide 24: Testing the ESD
	Slide 25: The team / Get Involved
	Slide 26: Thank you!

