
Three Factor Delay Learning Rules For Spiking Neural Networks

Mr. Luke Vassallo, Prof. Nima Taherinejad (luke.vassallo@ziti.uni-heidelberg.de)

Institute for Computer Engineering (ZITI)

Background & MotivationThree factor learning rules

- Three factors
 - Pre-synaptic spike train
 - Post-synaptic membrane potential
 - Learning signal
- Offer some gradient equivalence

Suitable for real-time / online implementation

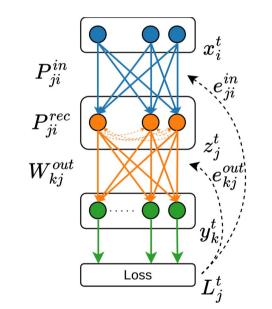


Background & Motivation Delay learning

Exclusive parameter set for temporal features

Can lead to significant accuracy improvement in temporal tasks

Smaller model sizes



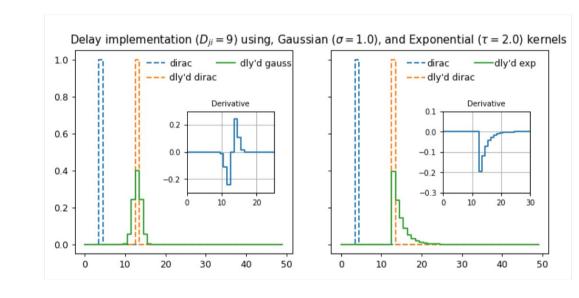
Method - Eligibility Propogation

$$\tau_{m} \frac{dv_{j}}{dt} = -(v_{j}(t) - v_{reset}) + RI_{j}(t) \longrightarrow v_{j}^{t+1} = \alpha v_{j}^{t} + W_{ji}^{in} x_{i}^{t-D_{ji}^{in}}$$

$$\frac{dE}{dP_{ji}} = \frac{dE}{dz_{j}} \times \frac{dz_{j}}{dv_{j}} \times \frac{dv_{j}}{dP_{ji}}$$

$$\frac{dE}{dP_{ji}} = L_{j}^{t} e_{p,ji}^{t}$$
Learning Signal Eligibility trace

 $P_{ji} \in \{W_{ji}, D_{ji}, D_i\}$


Method Non-differentiable spikes

$$v_{j}^{t+1} = \alpha v_{j}^{t} + W_{ji}^{in} x_{i}^{t-D_{ji}^{in}}$$

$$x_i^{t-D_{ji}} = \sum_k \delta(t-t_k-D_{ji})$$

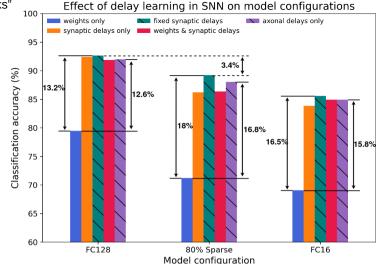
$$x_{i}^{t-D_{ji}} = \sum_{k} \delta(t - t_{k} - D_{ji})$$

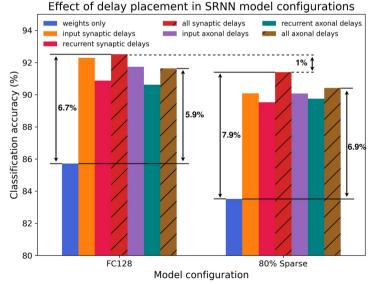
$$x_{i}^{t-D_{ji}} \approx \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(t - t_{k} - D_{ji})}{2\sigma^{2}}}$$

¹ Cramer et al. (2022), "The Heidelberg spiking datasets for the systematic evaluation of spiking neural networks"

² Hammouamri et al. (2024), "Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings"

Results


Synaptic and axonal delays


Feedforward and recurrent SNNs

 Spiking Heidelberg Digits Dataset¹

BPTT-based offline baseline²

Conclusions

Three factor learning rules for synaptic and axonal delays

- On audio classification tasks parameter heterogeneity enables:
 - Smaller models
 - Higher accuracy

Thank you for your attention

Questions?