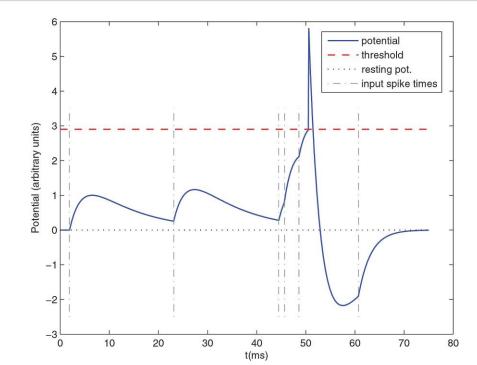

Efficient Event-based Delay Learning in Spiking Neural Networks

Balázs Mészáros, James Knight and Thomas Nowotny



Dataset	Method	Rec.	Delays	#Params	Top1 Acc.
	EventProp-GeNN (Nowotny et al., 2022)	\checkmark	×	N/a	84.80±1.5%
	Cuba-LIF (Dampfhoffer et al., 2022)	\checkmark	×	0.14M	$87.80{\pm}1.1\%$
	Adaptive SRNN (Yin et al., 2021)	\checkmark	×	N/a	90.40%
SHD	SNN+Delays (Patiño-Saucedo et al., 2023)	×	\checkmark	0.1M	90.43%
500	TA-SNN (Yao et al., 2021)	×	×	N/a	91.08%
	STSC-SNN (Yu et al., 2022)	×	×	2.1M	92.36%
	Adaptive Delays (Sun et al., 2023b)	×	\checkmark	0.1M	92.45%
	DL128-SNN-Dloss (Sun et al., 2023a)	×	\checkmark	0.14M	92.56%
	Dense Conv Delays (ours)	×	\checkmark	2.7M	93.44%
	RadLIF (Bittar & Garner, 2022)	\checkmark	×	3.9M	94.62%
	DCLS-Delays (2L-1KC)	×	\checkmark	0.2M	95.07±0.24%
	Recurrent SNN (Cramer et al., 2022)	\checkmark	×	N/a	$50.90 \pm 1.1\%$
SSC	Heter. RSNN (Perez-Nieves et al., 2021)	\checkmark	×	N/a	57.30%
	SNN-CNN (Sadovsky et al., 2023)	×	\checkmark	N/a	72.03%
	Adaptive SRNN (Yin et al., 2021)	\checkmark	×	N/a	74.20%
	SpikGRU (Dampfhoffer et al., 2022)	\checkmark	×	0.28M	$77.00{\pm}0.4\%$
	RadLIF (Bittar & Garner, 2022)	\checkmark	×	3.9M	77.40%
	Dense Conv Delays 2L (ours)	×	\checkmark	10.9M	77.86%
	Dense Conv Delays 3L (ours)	×	\checkmark	19M	78.44%
	DCLS-Delays (2L-1KC)	×	\checkmark	0.7M	79.77±0.09%
	DCLS-Delays (2L-2KC)	×	\checkmark	1.4M	80.16±0.09%
	DCLS-Delays (3L-1KC)	×	\checkmark	1.2M	80.29±0.06%
	DCLS-Delays (3L-2KC)	×	\checkmark	2.5M	80.69±0.21%
	MSAT (He et al., 2023)	Х	×	N/a	87.33%
GSC-35	Dense Conv Delays 2L (ours)	×	\checkmark	10.9M	92.97%
	Dense Conv Delays 3L (ours)	×	\checkmark	19M	93.19%
	RadLIF (Bittar & Garner, 2022)	\checkmark	×	1.2M	94.51%
	DCLS-Delays (2L-1KC)	×	\checkmark	0.7M	94.91±0.09%
	DCLS-Delays (2L-2KC)	×	\checkmark	1.4M	95.00±0.06%
	DCLS-Delays (3L-1KC)	×	\checkmark	1.2M	95.29±0.11%
	DCLS-Delays (3L-2KC)	×	\checkmark	2.5M	95.35±0.04%

Bonetto, G., Belin, D., & Káradóttir, R. T. (2021). Myelin: A gatekeeper of activity-dependent circuit plasticity?. *Science*, *374*(6569), eaba6905. Izhikevich, E. M. (2006). Polychronization: computation with spikes. *Neural computation*, *18*(2), 245-282. Hammouamri, I., Khalfaoui-Hassani, I., & Masquelier, T. Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings. In *The Twelfth International Conference on Learning Representations*.

Leaky Integrate-and-Fire neuron

Free dynamics	Transition condition	Jumps at transition	
$egin{aligned} & au_{ ext{mem}}rac{\mathrm{d}}{\mathrm{d}t}V=-V+I\ & au_{ ext{syn}}rac{\mathrm{d}}{\mathrm{d}t}I=-I \end{aligned}$	$egin{aligned} (V)_n - artheta &= 0 \ (\dot{V})_n eq 0 \ ext{for any } n \end{aligned}$	$egin{aligned} (V^+)_n &= 0 \ I^+ &= I^- + W e_n \end{aligned}$	

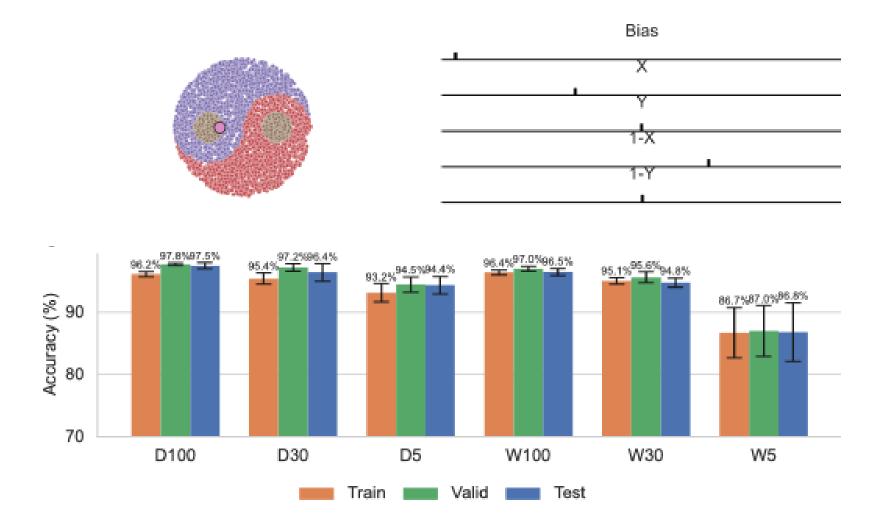
Backward propagation

Free dynamics	Transition condition	Jump at transition
$egin{aligned} & au_{ ext{mem}}\lambda_V' = -\lambda_V - rac{\partial l_V}{\partial V} \ & au_{ ext{syn}}\lambda_I' = -\lambda_I + \lambda_V \end{aligned}$	$t-t_k^{ m post}=0$ for any k	$egin{aligned} &(\lambda_V^-)_{n(k)} = (\lambda_V^+)_{n(k)} + rac{1}{ au_{ ext{mem}}(\dot{V}^-)_{n(k)}} iggl[artheta(\lambda_V^+)_{n(k)} \ &+ igl(W^ op(\lambda_V^+-\lambda_I)igr)_{n(k)} + rac{\partial l_ ext{p}}{\partial t_k^ ext{post}} + l_V^ l_V^+iggr] \end{aligned}$
	Gradient updates:	$rac{\mathrm{d}\mathcal{L}}{\mathrm{d}w_{ji}} = - au_{\mathrm{syn}} \sum_{\mathrm{spikes \ from \ }i} (\lambda_I)_j$

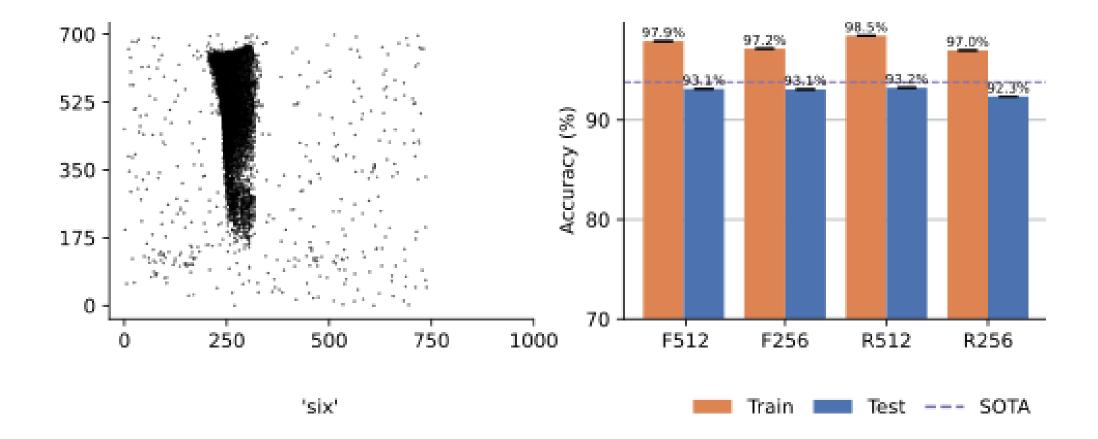
Wunderlich, T. C., & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific Reports, 11(1), 12829.

Synaptic delays

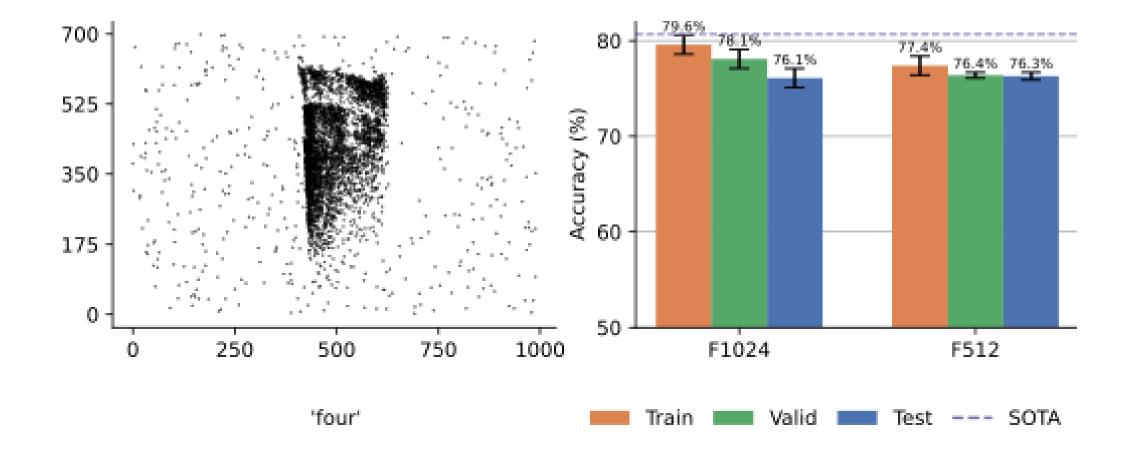
Free dynamics	Transition condition	Jumps at transition	
$egin{aligned} & au_{ ext{mem}}rac{\mathrm{d}}{\mathrm{d}t}V=-V+I\ & au_{ ext{syn}}rac{\mathrm{d}}{\mathrm{d}t}I=-I \end{aligned}$	$egin{aligned} (V)_n - artheta &= 0 \ (\dot{V})_n eq 0 \ & ext{for any } n \end{aligned}$	$(V^+)_n = 0$ $I^+ = I^- + We_n$ Delay here	


Fixed and learnable synaptic delays

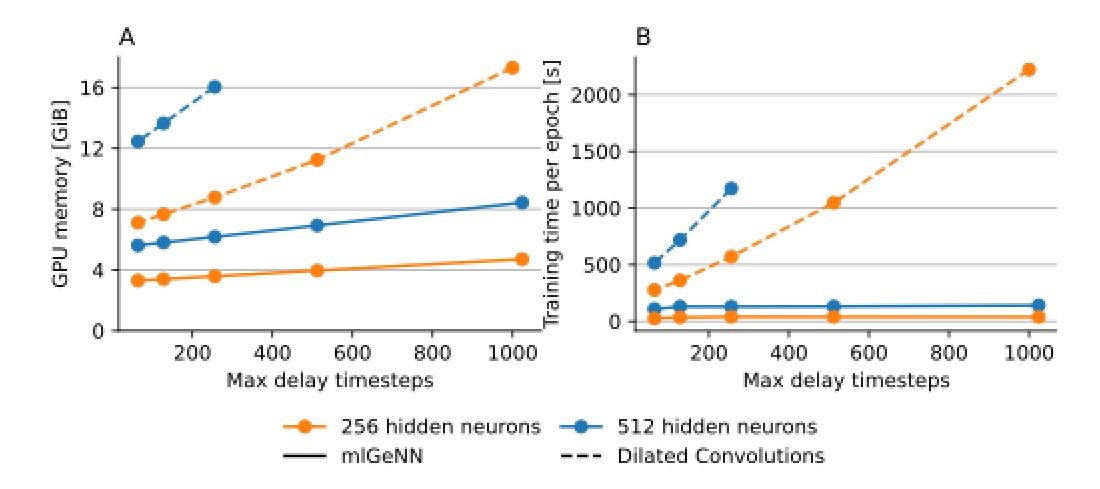
- EventProp updates weights only at spike time:
- That doesn't change when delays are included:


 And delay updates also only happen at spike times

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}w_{ji}} = -\tau_{\mathrm{syn}} \sum_{\mathrm{spikes from } i} (\lambda_I)_j \qquad \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}w_{ji}} = -\tau_{syn} \sum_{t_s \in \mathrm{spikes} \atop{\mathrm{from } i}} (\lambda_I)_j \Big|_{t_s + d_{ji}} \qquad \frac{\mathrm{d}\mathcal{L}}{\mathrm{d}d_{ji}} = -w_{ji} \sum_{t_s \in \mathrm{spikes} \atop{\mathrm{from } i}} (\lambda_I - \lambda_V)_j \Big|_{t_k + d_{ji}}$$


Yin-Yang

Spiking Heidelberg Digits



Spiking Speech Commands

Hammouamri, I., Khalfaoui-Hassani, I., & Masquelier, T. Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings. In The Twelfth International Conference on Learning Representations.

Benchmarking

Hammouamri, I., Khalfaoui-Hassani, I., & Masquelier, T. Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings. In The Twelfth International Conference on Learning Representations.