

The Neuromorphic Computing Platform

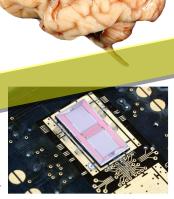
Steve Furber The University of Manchester Manchester, UK

HBP & Dutch Neuroscience: Shaping Collaborations

– Human Brain Project

Why focus on the brain ? Three Reasons

- Understanding the brain (Unifying Science Goal)


- Underpins what we are,
- Data & knowledge are fragmented,
- Integration is needed,
- Large scale collaborative approach is essential.

- Understanding brain diseases (Society)

- Costs Europe over €800 Billon/year,
- Affects 1/3 people,
- Number one cause of loss of economic productivity,
- No fundamental treatments exist or are in sight
- Pharma companies pulling out of the challenge.

Developing Future Computing (Technology)

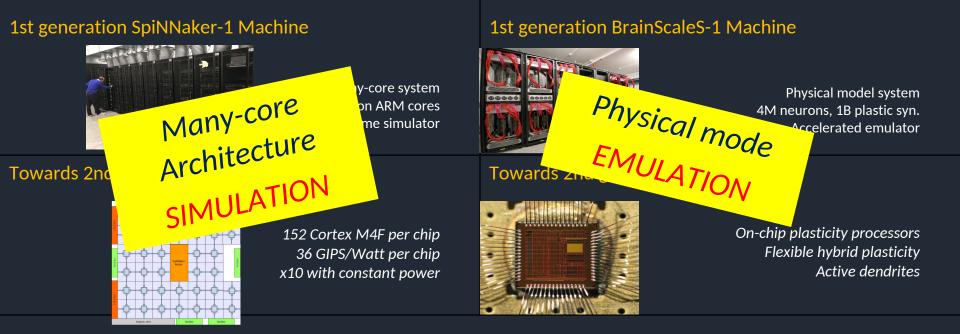
- Computing underpins modern economies,
- Traditional computing faces growing hardware, software, & energy barriers,
- Brain can be the source of energy efficient, robust, selfadapting & compact computing technologies,
- Knowledge driven process to derive these technologies is missing.

Neuromorphic Computing

Subproject 9 of the HBP Subproject Leader: Steve Furber Deputy Leader: Johannes Schemmel

Neuromorphic Machines

- Algorithms and Architectures for Neuromorphic Computing
 - Theory
 - Applications

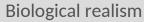

HBP & Dutch Neuroscience: Shaping Collaborations

The HBP Neuromorphic Computing Strategy Next generation of NMC is more biology driven

Designed and built from the transistor up !

Neuromorphic systems worldwide

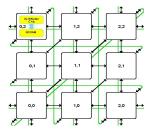
- state-of-the-art and complementarity



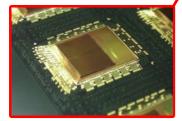


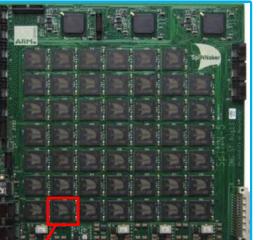
Ease of use

Many-core (ARM) architecture Optimized spike communication network Programmable local learning x0.01 real-time to x10 real-time Full-custom-digital neural circuits No local learning (TrueNorth) Programmable local learning (Loihi) Exploit economy of scale x0.01 real-time to x100 real-time Analog neural cores Digital spike communication Biological local learning Programmable local learning x10.000 to x1000 real-time


20 year NMC roadmap 2005-2025 (from pre- to post-HBP)

BrainScaleS 1	pro	totyp	ing			ans tion, c	lesig	n,							HBP Jc Platfor integra on	m C						
BrainScaleS 2										Concept, feature definition, design, prototyping, early platform integration							HBP Joint Platform integration (small systems)			ratior all ems)	1	
SpiNNaker 1	pro	ncept, totyp iRC, B	ing			tion, d	desig	n,								P Joint Platform egration, operation						
SpiNNaker 2										Concept, feature definition, design, prototyping, early platform integration							ing-ur NClC	o, oud	SpiNNcloud operation			
	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	
		Pre-HPB								НРВ								Po				



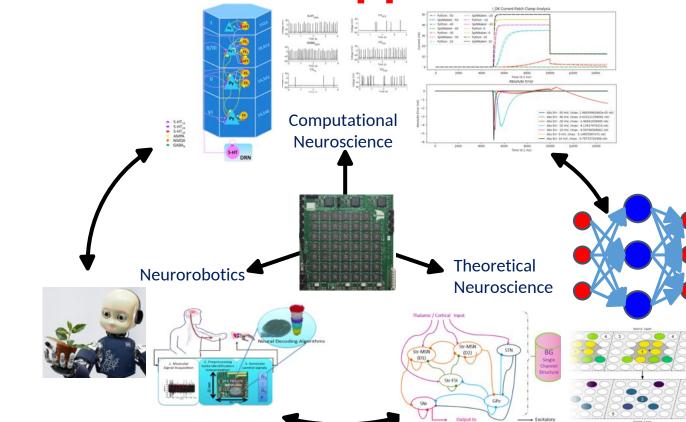

SpiNNaker machines

SpiNNaker board (864 ARM cores)

SpiNNaker chip (18 ARM cores)

• HBP platform

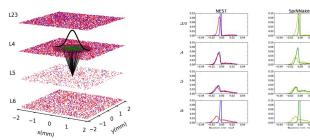
- 1M cores
- 11 cabinets (including server)
- Launch 30 March 2016
 - then 500k cores
 - 116 remote users
 - 6,530 SpiNNaker jobs run



SpiNNaker applications

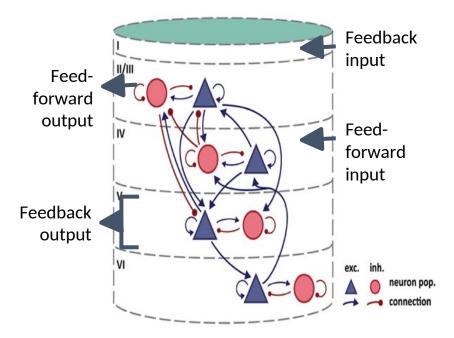
thalamus/brainstem

---- Inhibitory



Sarget Laser

Cortical microcircuit

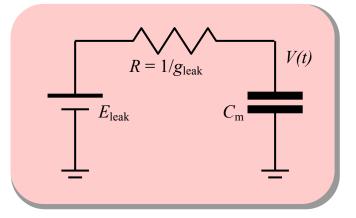

Realtime execution of cortical model

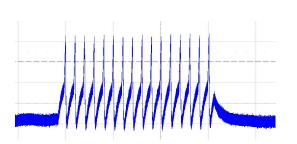
- 1mm² cortex
 - 77k neurons
 - 285M synapses
 - 0.1 ms time-step

• Best previous versions of this model

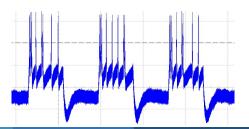

- HPC: 3x slow-down
- GPU: 2x slow-down
- Will scale to 100mm² without slow-down
 - on current machine, simply by using more boards

Oliver Rhodes, Luca Peres, Andrew G. Rowley, Andrew Gait, Luis A. Plana, Christian Brenninkmeijer & Steve.B. Furber, *"Real-time cortical simulation on neuromorphic hardware"*, Phil Trans Roy Soc A, December 2019.




BrainScaleS: neuromorphic computing with physical model systems

Consider a simple physical model for the neuron's cell membrane potential


accelerated neuron model

continuous time

V:

- fixed acceleration factor (we use 10³ to 10⁵) no multiplexing of components storing model variables
 - each neuron has its membrane capacitor
 - each synapse has a physical realization

Wafer-Scale integration: BrainScaleS-1

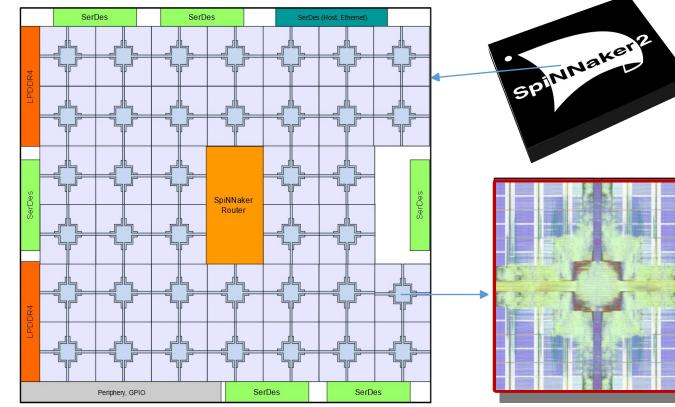
width: 4µ

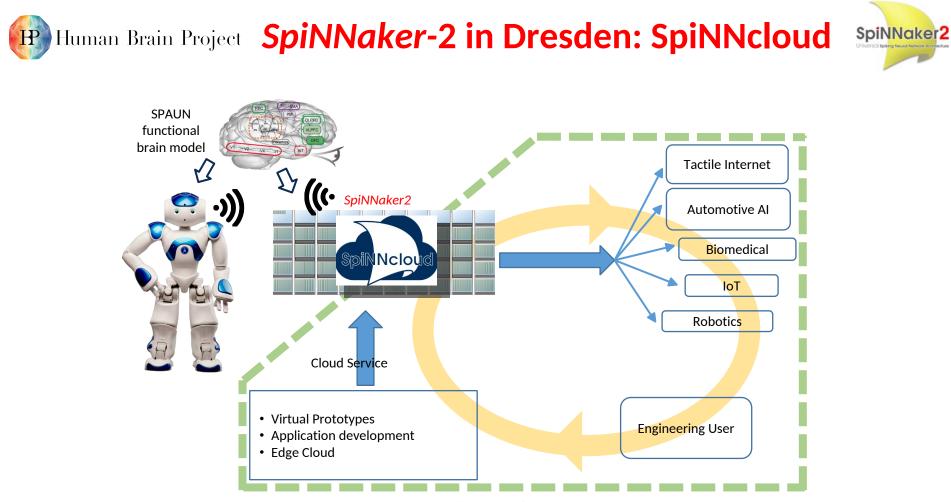
pitch: 8.4µm

700µm

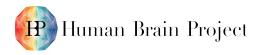
spacing: 4

HICANN V4.1 2015 HICANN V4.1 2015 Hickhoff Institute for Physics Heidelberg University Fraunhofer 114.000 dynamic synapses

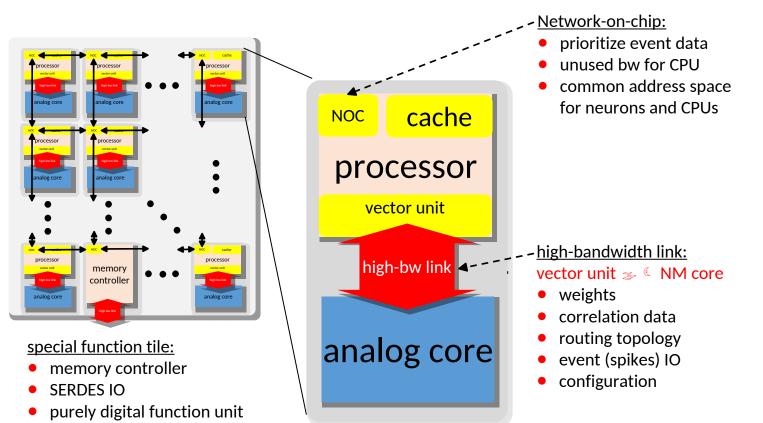

512 neurons (up to 14k inputs) chip-to-chip communication network



SpiNNaker-2



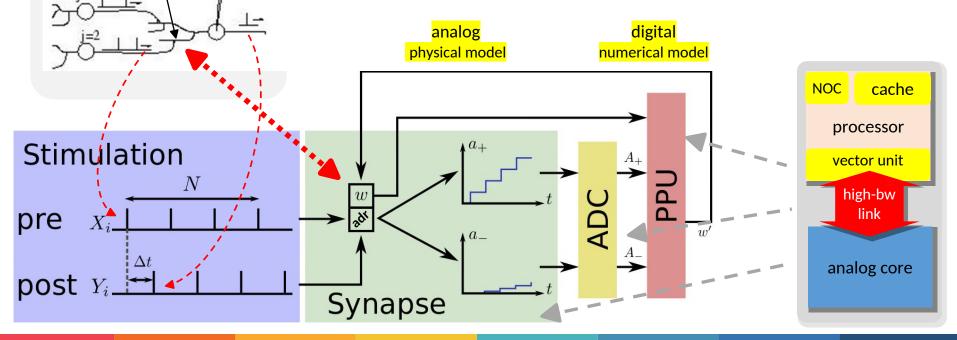
- 152 ARM-based processing elements
- 4 GByte DRAM
- 7 energy-efficient chip-to-chip links



Use Model (Dresden): Edge Cloud for Tactile Internet

BrainScaleS-2: analog neuromorphic system as co-

processor


plasticity takes

u,(1)

place at the synapse \

BrainScaleS-2: implementing hybrid plasticity

- analog correlation measurement in synapses
- A/D conversion by parallel ADC
- digital Plasticity Processing Units
 - \rightarrow full access to synaptic weights ($\omega)$
 - \rightarrow full access to configuration data (adr)

NICE 2020 March 17 - 20th 2020 Neuro-Inspired Computational Elements Workshop

Im Neuenheimer Feld 227 D-69120 Heidelberg Germany

2020

Workshop: March 17-20th Tutoriale March 20th 2020 Heidelberg - Germany

THANK YOU!

HBP & Dutch Neuroscience: Shaping Collaborations