Brain-Inspired Computing

An Introduction Into Accelerated Analog Neuromorphic Computing with BrainScaleS

Johannes Schemmel

Electronic Vision(s) Group Kirchhoff Institute for Physics Heidelberg University, Germany

Co-funded by the European Union

Human Brain Project

Why focus on the brain ? Three Reasons

- Understanding the brain (Unifying Science Goal)

- Underpins what we are,
- Data & knowledge are fragmented,
- Integration is needed,
- Large scale collaborative approach is essential.

- Understanding brain diseases (Society)

- Costs Europe over €800 Billon/year,
- Affects 1/3 people,
- Number one cause of loss of economic productivity,
- No fundamental treatments exist or are in sight
- Pharma companies pulling out of the challenge.

Developing Future Computing (Technology)

- Computing underpins modern economies,
- Traditional computing faces growing hardware, software, & energy barriers,
- Brain can be the source of energy efficient, robust, selfadapting & compact computing technologies,
- Knowledge driven process to derive these technologies is missing.

Neuromorphic Computing

Part of EBRAINS infrastructure Subproject Leader: Steve Furber Deputy Leader: Johannes Schemmel

Neuromorphic Machines

- Algorithms and Architectures for Neuromorphic Computing
 - Theory
 - Applications

Computers are becoming more brain-like

Perceptron model (biology of 1950)

- used in Machine Learning
- vector-matrix multiplication

$$f\left(\sum_i w_i x_i + b
ight)$$

 simple non-linear activation function f (ReLU):

Spike-based model (current biology)

- timecontinuous dynamical system
- vector-matrix multiplication
- complex nonlinearities
- binary neuron output
- allows to model biological learning mechanisms

Brain-Inspired Computing

REALIZE future computing based on biological information processing

understanding biological information processing

Neuromorphic Computing : artificial system of neurons and synapses inspired by neuroscience

hardware realization using dedicated circuits:

- model embodied in the computing substrate
- substrate
 purposely build
 for a certain class
 of models

numerical model : digital simulation

represents model parameters as binary numbers :

 \rightarrow integer, float, bfloat16

physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

 \rightarrow voltage, current, charge

→ BrainScaleS spike-based physical modeling system

- overcoming the power wall of Turing-based computing
- support research of local learning rules
- time-continuous modeling of neuron dynamics
- acceleration of modeling including hierarchical learning schemes

BrainScaleS : Neuromorphic computing with physical model systems

Consider a simple physical model for the neuron's cell membrane potential V:

$$C_{\rm m} \frac{dV}{dt} = g_{\rm leak} \left(E_{\rm leak} - V \right)$$

$$R = 1/g_{\text{leak}} V(t)$$

$$E_{\text{leak}} C_{\text{m}}$$

$$\frac{dV}{dt}_{bio} << \frac{dV}{dt}_{VLS}$$

→ <u>accelerated neuron model</u>

continuous time

- fixed acceleration factor (we use 10³ to 10⁵)
 no multiplexing of components storing model variables
 - each neuron has its membrane capacitor
 - each synapse has a physical realization

Structure of BrainScaleS neurons: array of parameterized dendrite circuits

photograph of the BrainScaleS 1 neuromorphic chip

Time <i>Scales</i>	Nature + Real- time	Simulation	Accelerated Model
Causality Detection	10 ⁻⁴ s	0.1 s	10 ⁻⁸ s
Synaptic Plasticity	1 s	1000 s	10 ⁻⁴ s
Learning	Day	1000 Days	10 s
Development	Year	1000 Years	3000 s
12 Orders of Magnitude			
Evolution	> Millenia	> 1000 Millenia	> Months
> 15 Orders of Magnitude			

114.000

dynamic synapses

512 neurons

(up to 14k inputs)

network

chip-to-chip communication

width: 4µ

pitch: 8.4µm

700µm

spacing: 4.4

HICANN V4.1 2015 Kirchhoff Institute for Physics Heidelberg University

BrainScaleS-1 multi-level architecture

BrainScales-1 introduced for the first time

- Accelerated (x10.000) mixed-signal implementation of spiking neural networks
- AdEx neurons with very high synaptic imput count (> 10k)
- Wafer-scale event communication

(Balanced) Random Network

- "Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking Neurons" (Brunel 2000)
- 3000 neurons (> 1 Gevent/s)
- ~700k synapses (> 0.1 Tconn/s)
- 138 HICANN chips
- 800 individual external poisson sources with 50 Hz each -> 40 kHz (bio) (400 MHz wall clock rate)

BrainScaleS-1: Observations leading to second-generation BrainScaleS system

after training:

Non-Turing physical computing system performing autonomously

but

Turing-based computing is used in multiple places:

- training
- system initialization
- hardware calibration
- runtime control
- input/output data handling

Shortening the hardware – software loop : Analog neuromorphic system as coprocessor

BrainScaleS-2 (BSS-2) ASIC

- 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)
- 128k synapses
- 512 neural compartments (Sodium, Calcium and NMDA spikes)
- two SIMD plasticity processing units (PPU)
- PPU internal memory can be extended externally

- fast ADC for membrane voltage monitoring
- 256k correlation sensors with analog storage (> 10 Tcorr/s max)
- 1024 ADC channels for plasticity input variables
- 32 Gb/s neural event IO
- 32 Gb/s local entropy for stochastic neuron operation

BrainScaleS-2 supports spike-based and Perceptron operation simultaneously

Learning and plasticity

BrainScaleS-2:

- biological relevant neuron model
 - Adaptive Exponential Integrate and Fire (AdExp)
 - NMDA, Ca and Na spikes
 - biological relevant network topologies
 - more than 10k synapses per neuron
 - structured neurons with non-linear dendrites

Trivial solution: everything is pre-computed on the host-computer

- requires precise calibration of hardware
- takes long time (much longer than running the experiment on the accelerated system)

Better approach: hardware in-the-loop training

 \rightarrow makes use of high emulation speed

Biological solution : Integrate some kind of learning or plasticity mechanism

- local feed-back loops, aka training, adjust system parameters
- no calibration of synapses necessary \rightarrow learning replaces calibration
- plastic network topology

Problem:

how to fix millions of parameters

- network topology
- neuron sizes and parameters
- synaptic strengths

Complexity of synaptic plasticity is key to biological intelligence

Protein-protein interaction map (...) of post-synaptic density

"Towards a quantitative model of the post-synaptic proteome"

O Sorokina et.al., Mol. BioSyst., 2011,7, 2813–2823

Protein complex organization in the postsynaptic density (PSD)

"Organization and dynamics of PDZdomain-related supramodules in the postsynaptic density" W. Feng and M. Zhang, Nature Reviews NS, 10/2009

- > 6000 genes primarily active in the brain
- high percentage of regulatory RNA
- evidence for epigenetic effects in plasticity

BrainScaleS-2: Hybrid Plasticity

analog correlation measurement in synapses

Stabilizing firing rates with spike time dependent plasticity

Stability analysis for plasticity rules

each data point is full plasticity experiment covering 200s biological real time

Learning Pong – tech demo using internal PPU only

- reinforcement learning rule
- learning is calibration
- experiment runs completely on internal PPU
- 5s for 10k iterations
 network time 0.4ms/iteration
 23 μJ total chip energy

- assign random pre-synaptic neurons
- evaluate correlation
- keep the best

assign random pre-synaptic neurons evaluate correlation keep the best

assign random pre-synaptic neurons evaluate correlation keep the best replace weakly correlating synapses constantly against random new ones

Structural plasticity extends to structured neurons

Experimental example : structural plasticity

256 pre-synaptic inputs mapped to single dendrite with 32 active synapses plasticity rule combines structural, STDP and homeostatic terms:

if
$$\omega \ge \theta_{rand}$$
:
 $\omega' \leftarrow \omega$
 $+\lambda_{STDP}(c_{+} + c_{-})$
 $-\lambda_{hom} (\nu + \nu_{target})$
 $a' \leftarrow a$
else:
 $\omega' \leftarrow \omega_{init}$
 $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, arXiv:1912.12047v1, 2020

Supervised learning using Hybrid Plasticity

0.0 s

256 pre-synaptic inputs mapped to single dendrite with 32 active synapses plasticity rule combines structural, STDP and homeostatic terms:

dots represent realized (active) synapses
ten target groups (with three dendrites each)
trained simultaneously
1.5 s wall time needed for emulation

if $\omega \geq \theta_{rand}$: $\omega' \leftarrow \omega$ $+\lambda_{\text{STDP}}(c_++c_-)$ $-\lambda_{\rm hom} \left(\nu + \nu_{\rm target} \right)$ $a' \leftarrow a$ else: $\omega' \leftarrow \omega_{\text{init}}$ $a' \leftarrow rand(0,8)$

B. Cramer and S. Billaudelle, arXiv:1912.12047v1, 2020

Supervised learning using Hybrid Plasticity

1554.7 s

Hybrid Plasticity allows simultaneous rules for:

- strucutral optimization
- homeostatic balance
- pre-post correlation and more

if $\omega > A$ 1.

using software running in parallel to the analog neuron operation

$$\omega' \leftarrow \omega + \lambda_{\text{STDP}}(c_{+} + c_{-}) - \lambda_{\text{hom}} \left(\nu + \nu_{\text{target}}\right)$$

a' \leftarrow a
else:
$$\omega' \leftarrow \omega_{\text{init}} + \alpha' \leftarrow \text{rand}(0,8)$$

B. Cramer and S. Billaudelle, arXiv:1912.12047v1, 2020

BrainScaleS in EBRAINS

- 2nd generation BrainScaleS with hybrid plasticity support is part of the EBRAIN research infrasturcue for neurosciences
- We are currently developing the high-level user access software, based on PyNN
- Large networks spanning full wafers like 1st generation BrainScaleS are currently not funded
- Small networks of 10 to 50 chips are currently under development

