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Computers are becoming more brain-like

• one year training

• energy consumption: 500 kW

→182500 kWh (36500 €)

• learning is expensive and slow

• applying the learned knowledge, 

aka inference,

is much cheaper and faster 14



how is this done?

compute more like the brain:      neural networks
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Brain-Inspired Computing
REALIZE future computing 

based on biological 
information processing

understanding biological 
information processing

Neuromorphic Computing : 
artificial system of neurons and synapses inspired by neuroscience

→ BrainScaleS spike-based physical modeling system

• overcoming the power wall of Turing-based computing

• support research of local learning rules

• time-continuous modeling of neuron dynamics

• acceleration of modeling including hierarchical learning schemes

hardware realization 
using dedicated 
circuits:

→model embodied 
in the computing 
substrate

→ substrate 
purposely build 
for a certain class 
of models 
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numerical model : digital simulation

represents model parameters as binary numbers :

→integer, float, bfloat16

physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

→ voltage, current, charge



BrainScaleS : Neuromorphic computing with physical model systems

Consider a simple 
physical model for the 
neuron’s cell 
membrane potential V:

( )VEg
dt

dV
C −= leakleakm

Cm

R = 1/gleak

Eleak

V(t)

→ accelerated neuron model
dt

dV

dt

dV

VLSIbio



continuous time
• fixed acceleration factor (we use 103 to 105)

no multiplexing of components storing model
variables
• each neuron has its membrane capacitor
• each synapse has a physical realization
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Structure of BrainScaleS neurons: array of parameterized dendrite circuits

photograph of the BrainScaleS 1 
neuromorphic chip

• 180 nm (generation 1) or 65 nm 
(gen. 2)

• 24 calibration parameters per 
neuron

• modular structure
• full set of ion-channel circuits 

for each dendrite
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Nature + Real-
time

Simulation Accelerated Model

Causality Detection 10-4 s 0.1 s 10-8 s

Synaptic Plasticity 1 s 1000 s 10-4 s

Learning Day 1000 Days 10 s

Development Year 1000 Years 3000 s

12 Orders of Magnitude

Evolution > Millenia
> 1000 

Millenia
> Months

> 15 Orders of Magnitude

TimeScales
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Wafer-Scale Integration : 

BrainScaleS-1

114.000 
dynamic 
synapses 

512 neurons 
(up to 14k inputs)
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BrainScales-1 introduced for the first time

- Accelerated (x10.000) mixed-signal implementation of spiking neural networks

- AdEx neurons with very high synaptic imput count (> 10k)

- Wafer-scale event communication

single chip wafer module hybrid system

BrainScaleS-1 multi-level architecture
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32

(Balanced) Random Network

● “Dynamics of Sparsely Connected 
Networks of Excitatory and Inhibitory 
Spiking Neurons” (Brunel 2000)

● 3000 neurons (> 1 Gevent/s)

● ~700k synapses (> 0.1 Tconn/s)

● 138 HICANN chips
● 800 individual external poisson sources 

with 50 Hz each -> 40 kHz (bio) (400 MHz 
wall clock rate)
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Hardware

Software

BrainScaleS-1 : 
Observations leading to second-generation BrainScaleS system

after training:

Non-Turing physical 
computing system 
performing autonomously

but

Turing-based computing is 
used in multiple places:

• training

• system initialization

• hardware calibration

• runtime control

• input/output data 
handling
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Shortening the hardware – software loop :
Analog neuromorphic system as coprocessor

memory
controller

high-bw link

NOC high-bandwidth link:

vector unit → NM core

• weights

• correlation data

• routing topology

• event (spikes) IO

• configuration

processor
vector unit

analog 
core

high-bw
link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

special function tile:

• memory controller

• SERDES IO

• purely digital function unit

Network-on-chip:

• prioritize event data

• unused bw for CPU

• common address space 
for neurons and CPUs
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• 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)

• 128k synapses

• 512 neural compartments (Sodium, Calcium and NMDA spikes)

• two SIMD plasticity processing units (PPU)

• PPU internal memory can be extended externally 

• fast ADC for membrane voltage monitoring

• 256k correlation sensors with analog storage (> 10 Tcorr/s max)

• 1024 ADC channels for plasticity input variables

• 32 Gb/s neural event IO

• 32 Gb/s local entropy for stochastic neuron operation

BrainScaleS-2 (BSS-2) ASIC
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BrainScaleS-2 supports spike-based and Perceptron operation simultaneously

N
M

D
A

Ca

Na
NMDANMDA

• sequential processing of all 
layers

• analog vector-matrix 
multiplication

• ReLU activation function
with 4 to 8 bit resolution

• speed mostly limited by
external memory

6 bit direct readout
of activations

input data BSS-2 ASIC

DCNN example : Alexnet
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Learning and plasticity
BrainScaleS-2:

✓ biological relevant neuron model
- Adaptive Exponential Integrate and Fire (AdExp)
- NMDA, Ca and Na spikes

✓ biological relevant network topologies
- more than 10k synapses per neuron
- structured neurons with non-linear dendrites

Trivial solution: everything is pre-computed on the host-computer

• requires precise calibration of hardware

• takes long time (much longer than running the experiment on the accelerated system)

Better approach: hardware in-the-loop training

→makes use of high emulation speed

Biological solution : Integrate some kind of learning or plasticity mechanism

• local feed-back loops, aka training, adjust system parameters

• no calibration of synapses necessary → learning replaces calibration

• plastic network topology

Problem:
how to fix millions of parameters

• network topology

• neuron sizes and parameters

• synaptic strengths
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Complexity of synaptic plasticity is key to biological intelligence

Protein-protein interaction map (…) of 

post-synaptic density

“Towards a quantitative model of the post-synaptic 

proteome”

O Sorokina et.al., Mol. BioSyst., 2011,7, 2813–2823

Protein complex organization in 

the postsynaptic density (PSD)

“Organization and dynamics of PDZ-

domain-related supramodules in the 

postsynaptic density”

W. Feng and M. Zhang, Nature Reviews NS, 

10/2009

• > 6000 genes primarily

active in the brain

• high percentage of 

regulatory RNA

• evidence for epigenetic

effects in plasticity
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BrainScaleS-2: Hybrid Plasticity
• analog correlation measurement in synapses

• A/D conversion by parallel ADC

• digital Plasticity Processing Units can access
– synaptic weights (𝜔)

– configuration data (adr)  → structural plasticity

– neuron voltages and firing rates

analog

physical model

digital

numerical model

plasticity takes 

place at the 

synapse

processor

vector unit

analog core

high-bw
link

cacheNOC
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Stabilizing firing rates with spike time dependent plasticity

Wall-time per trace: 200ms 

→ acceleration factor of 1000

David Stöckel, Master Thesis, 
Heidelberg University, 2017

presynaptic membrane potential

Dt = tpost – tpre

postsynaptic membrane potential

time
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Stability analysis for plasticity rules

each data point is full plasticity experiment covering 200s biological real time

Measure the plasticity parameter phase space
David Stöckel, Master Thesis, 
Heidelberg University, 2017
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• reinforcement learning rule

• learning is calibration

• experiment runs completely on 
internal PPU

• 5s for 10k iterations

network time 0.4ms/iteration
23 µJ total chip energy

Learning Pong – tech demo using internal PPU only
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Structural plasticity
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• assign random pre-synaptic 
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Structural plasticity
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• assign random pre-synaptic 
neurons

• evaluate correlation

• keep the best
repeat

Structural plasticity
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assign random pre-synaptic 
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Structural plasticity
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assign random pre-synaptic 
neurons

evaluate correlation
keep the best
replace weakly correlating 

synapses constantly against 
random new ones

Structural plasticity
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Structural plasticity extends to structured neurons
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256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

plasticity rule combines 
structural, STDP and 
homeostatic terms:

B. Cramer and S. Billaudelle, 
arXiv:1912.12047v1, 2020

256

32
if 𝜔 ≥ 𝜃rand:

𝜔´ ← 𝜔
+𝜆STDP 𝑐+ + 𝑐−

−𝜆hom 𝜈 + 𝜈target

𝑎´ ← 𝑎
else:
𝜔´ ← 𝜔init
𝑎´ ← rand(0,8)

Experimental example : structural plasticity
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256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

plasticity rule combines 
structural, STDP and 
homeostatic terms:

if 𝜔 ≥ 𝜃rand:

𝜔´ ← 𝜔
+𝜆STDP 𝑐+ + 𝑐−

−𝜆hom 𝜈 + 𝜈target

𝑎´ ← 𝑎
else:
𝜔´ ← 𝜔init
𝑎´ ← rand(0,8)

dots represent realized (active) synapses
ten target groups (with three dendrites each) 

trained simultaneously
1.5 s wall time needed for emulation

Supervised learning using Hybrid Plasticity

B. Cramer and S. Billaudelle, 
arXiv:1912.12047v1, 2020
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256 pre-synaptic inputs 
mapped to single dendrite 
with 32 active synapses

plasticity rule combines 
structural, STDP and 
homeostatic terms:

if 𝜔 ≥ 𝜃rand:

𝜔´ ← 𝜔
+𝜆STDP 𝑐+ + 𝑐−

−𝜆hom 𝜈 + 𝜈target

𝑎´ ← 𝑎
else:
𝜔´ ← 𝜔init
𝑎´ ← rand(0,8)

dots represent realized (active) synapses
ten target groups (with three dendrites each) 

trained simultaneously
1.5 s wall time needed for emulation

Hybrid Plasticity

allows simultaneous rules for:

• strucutral optimization

• homeostatic balance

• pre-post correlation

and more

using software running in 

parallel to the analog neuron

operation

Supervised learning using Hybrid Plasticity

B. Cramer and S. Billaudelle, 
arXiv:1912.12047v1, 2020
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• 2nd generation BrainScaleS with hybrid plasticity support is part of the 
EBRAIN research infrasturcue for neurosciences

• We are currently developing the high-level user access software, 
based on PyNN

• Large networks spanning full wafers like 1st generation BrainScaleS are 
currently not funded

• Small networks of 10 to 50 chips are currently under development

BrainScaleS in EBRAINS
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