Introduction to the BrainScaleS Tutorial
EBRAINS Infrastructure Training

Eric Mdiller
mueller@kip.uni-heidelberg.de

Electronic Vision(s), KIP
UHEI

2020-11-03

EBRAINS

BrainScaleS-2

Mixed-signal implementation
Accelerated model dynamics (~ 10%)
AdEx neurons, short-term plasticity

Support for online updates of neuron parameters,
synapses (and network topology)

Programmable plasticity
Structured neurons & nonlinear effects of dendrites

© 06 0 o

© ©

©

Non-spiking operation mode

1/10

https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/1804.01840
https://arxiv.org/abs/2006.13177

BrainScaleS-2

@ Mixed-signal implementation
o Accelerated model dynamics (~ 103)
o AdEx neurons, short-term plasticity

o Support for online updates of neuron parameters,
synapses (and network topology)

@ Programmable plasticity
@ Structured neurons & nonlinear effects of dendrites
@ Non-spiking operation mode

(not covered by tutorial)

1/10

https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/1804.01840
https://arxiv.org/abs/2006.13177

BrainScaleS — System Access

o Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

o Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

o Cluster-attached accelerators (at UHEI: BSS-1&2)

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

o Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

o Cluster-attached accelerators (at UHEI: BSS-1&2)
o Exposed via HBP collaboratory

aaaaaaa
eeeeeee

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

o Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

o Cluster-attached accelerators (at UHEI: BSS-1&2)
o Exposed via HBP collaboratory

) o Resource management via SLURM (plus custom
-1 I'H . extensions for accelerator hardware management)
]

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

o Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

o Cluster-attached accelerators (at UHEI: BSS-1&2)
o Exposed via HBP collaboratory

o Resource management via SLURM (plus custom
extensions for accelerator hardware management)

o Software development using strict code review,
continuous integration & deployment

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

&/

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

o Cluster-attached accelerators (at UHEI: BSS-1&2)
o Exposed via HBP collaboratory

Resource management via SLURM (plus custom
extensions for accelerator hardware management)

Software development using strict code review,
continuous integration & deployment

Fully clusterized software environment

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

o Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

o Cluster-attached accelerators (at UHEI: BSS-1&2)
o Exposed via HBP collaboratory

o Resource management via SLURM (plus custom
extensions for accelerator hardware management)

o Software development using strict code review,
continuous integration & deployment

o Fully clusterized software environment

o System software implemented in C++, open
sourced (cf. here and here) incl. Python wrappers
for all relevant layers

2/10

https://github.com/electronicvisions
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS-2 — Internals?

ramp amp 4---f2mp voltage.

— generation generation

dren

acen

o
8
*
:
§
3
=
2
o
]
5
S
=
&!
S
S|
g
L
£
20,
Ql
8

T 128 oo

digital neuron control

r

o

! neuron signals =y [pos] bottom right quadrant [J. Schemmel, S. Billaudelle, P. Dauer, J. Weis, 2020]

3/10

https://arxiv.org/abs/2003.11996

BrainScaleS-2 — Low-level Configuration

...

def configure_synapses (*args):
Configure routing crossbar, PADI bus, synapse drivers, and parts
of the synapse array.
W
fisch_builder = fisch.PlaybackProgramBuilder ()
fisch_builder.write(anncore_center_ba, fisch.Omnibus(Oxffff))
config_builder.merge_back(fisch_builder)

synapse array
correlation_switch_quad = haldls.ColumnCorrelationQuad()
switch = correlation_switch_quad.ColumnCorrelationSwitch()
switch.enable_internal_causal = True
switch.enable_internal_acausal = True
for s in range(4):

correlation_switch_quad.set_switch(s, switch)

for sq in iter_all(halco.ColumnCorrelationQuadOnDLS) :
config_builder.write(sq, correlation_switch_quad,
haldls.Backend.Omnibus)

current_switch_quad = haldls.ColumnCurrentQuad()
switch = current_switch_quad.ColumnCurrentSwitch()
switch.enable_synaptic_current_excitatory = True
switch.enable_synaptic_current_inhibitory = True
for s in range(4):
current_switch_quad.set_switch(s, switch)

ELTYTTYY

fesescece

4/10

Expert-only?

PyNN

“PyNN — A Python package for simulator-independent
specification of neuronal network models.”

6/10

https://neuralensemble.org/PyNN/

PyNN

o Python-based modeling API for spiking neural
networks

6/10

https://neuralensemble.org/PyNN/

PyNN

o Python-based modeling API for spiking neural
networks

o Topology-centric description (data flow graph)

6/10

https://neuralensemble.org/PyNN/

PyNN

o Python-based modeling API for spiking neural
networks

o Topology-centric description (data flow graph)

o Neuron and synapse dynamics (cell and synapse
types)
o Experiment protocol (“what and when”)

6/10

https://neuralensemble.org/PyNN/

PyNN

o Python-based modeling API for spiking neural
networks

o Topology-centric description (data flow graph)

o Neuron and synapse dynamics (cell and synapse
types)
o Experiment protocol (“what and when”)
o stimulus (input nodes, e.g., spike trains)

6/10

https://neuralensemble.org/PyNN/

PyNN

o Python-based modeling API for spiking neural
networks
o Topology-centric description (data flow graph)
o Neuron and synapse dynamics (cell and synapse
types)
o Experiment protocol (“what and when”)
o stimulus (input nodes, e.g., spike trains)

o recording (output nodes, e.g., spikes and membrane
voltage)

6/10

https://neuralensemble.org/PyNN/

PyNN

o

Python-based modeling API for spiking neural
networks

Topology-centric description (data flow graph)

Neuron and synapse dynamics (cell and synapse
types)
Experiment protocol (“what and when”)

o stimulus (input nodes, e.g., spike trains)

o recording (output nodes, e.g., spikes and membrane

voltage)

Supports different backends (e.g., NEST, NEURON,
SpiNNaker, BrainScaleS)

© ©

o

©

6/10

https://neuralensemble.org/PyNN/

PyNN.brainscales2 — Example

oL
nl = Population(l, HXNeuron())
. n2 = Population(l, HXNeuron())
—\\\\‘ n3 = Population(1l, HXNeuron())
nl.record('spikes')
~~~~~ o n3.record(['v', 'spikes'l)
Projection(nl, n3, Al1ToAllConnector)
Projection(n3, n1, AllToAllConnector, receptor_type='inh')
Projection(nl, n2, AllToAllConnector, receptor_type='inh')
Projection(n2, n3, AllToAllConnector, synapse_type=XYZPlastic)
4 Projection(n3, n2, AllToAllConnector, synapse_type=XYZPlastic,

Ul Sy o
~~~~~~ / receptor_type='inh')
—> . . .
. stim = Population(l, SpikeSourceArray(...))

"""""""""" Projection(stim, nl, Al1ToAllConnector)
Projection(stim, n2, Al1lToAllConnector)
Projection(stim, n3, Al1lToAllConnector)
...

7/10

https://github.com/electronicvisions/pynn-brainscales

Hidden workflow

@ Collab submits experiment to the neuromorphic central job queuing service

@ PyNN script starts in a containerized environment

o Triggers “hardware run”, reads back results and transforms them into PyNN data
structures

@ Collab accesses result data 8/10

Hidden workflow

@ Collab submits experiment to the neuromorphic central job queuing service
o metadata is checked (in particular: hardware quota)
@ UHEI queue runner pulls jobs from the central job queue
o Request access to hardware resources (conventional and neuromorphic)
o As soon as resources are available: job gets scheduled to a cluster node
@ PyNN script starts in a containerized environment
@ Lower software layer:
o Initializes network connection to the hardware setup
o Compiles initial experiment configuration: Network topology, initial parameters
o Compiles dynamic experiment components: External stimulus, timed (re)configuration
(e.g., recording properties, readout of weights)
o Upload of both “parts” onto the system (prebuffering)
o Triggers “hardware run”, reads back results and transforms them into PyNN data
structures
@& PyNN code accesses result data: Writing files to disk.
® Job result state (incl. output files) are registered at central job queue

@ Collab accesses result data 8/10

Summary

BrainScaleS: accelerated analog neuromorphic hardware incl. flexible plasticity

Entry-level support now under full development (cf. PyNN.brainscales?)

Upcoming hands-on session:
o Collab-based access to multiple BrainScaleS-2 systems
o Introduction to basic properties of analog neuromorphic hardware:
Membrane dynamics, Stimulus, Recording

°
o Comprehensive software support at expert-level
°
°

©

Example experiments soon available (cf. HBP Neuromorphic Guidebook)

9/10

https://github.com/electronicvisions/pynn-brainscales
https://electronicvisions.github.io/hbp-sp9-guidebook/

Team BrainScaleS

