
Introduction to the BrainScaleS Tutorial
EBRAINS Infrastructure Training

Eric Müller
mueller@kip.uni-heidelberg.de

Electronic Vision(s), KIP
UHEI

2020-11-03

BrainScaleS-2

Mixed-signal implementation

Accelerated model dynamics (∼ 103)

AdEx neurons, short-term plasticity

Support for online updates of neuron parameters,
synapses (and network topology)

Programmable plasticity

Structured neurons & nonlinear effects of dendrites

Non-spiking operation mode

1/10

https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/1804.01840
https://arxiv.org/abs/2006.13177

BrainScaleS-2

Mixed-signal implementation

Accelerated model dynamics (∼ 103)

AdEx neurons, short-term plasticity

Support for online updates of neuron parameters,
synapses (and network topology)

Programmable plasticity

Structured neurons & nonlinear effects of dendrites

Non-spiking operation mode

(not covered by tutorial)

1/10

https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/1804.01840
https://arxiv.org/abs/2006.13177

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

Cluster-attached accelerators (at UHEI: BSS-1&2)

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

Cluster-attached accelerators (at UHEI: BSS-1&2)

Exposed via HBP collaboratory

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

Cluster-attached accelerators (at UHEI: BSS-1&2)

Exposed via HBP collaboratory

Resource management via SLURM (plus custom
extensions for accelerator hardware management)

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

Cluster-attached accelerators (at UHEI: BSS-1&2)

Exposed via HBP collaboratory

Resource management via SLURM (plus custom
extensions for accelerator hardware management)

Software development using strict code review,
continuous integration & deployment

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

Cluster-attached accelerators (at UHEI: BSS-1&2)

Exposed via HBP collaboratory

Resource management via SLURM (plus custom
extensions for accelerator hardware management)

Software development using strict code review,
continuous integration & deployment

Fully clusterized software environment

2/10

https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS — System Access

Custom chips, custom setups, but “standard”
interfaces (e.g., GbE)

Cluster-attached accelerators (at UHEI: BSS-1&2)

Exposed via HBP collaboratory

Resource management via SLURM (plus custom
extensions for accelerator hardware management)

Software development using strict code review,
continuous integration & deployment

Fully clusterized software environment

System software implemented in C++, open
sourced (cf. here and here) incl. Python wrappers
for all relevant layers

2/10

https://github.com/electronicvisions
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2006.13138

BrainScaleS-2 — Internals?

[J. Schemmel, S. Billaudelle, P. Dauer, J. Weis, 2020]

3/10

https://arxiv.org/abs/2003.11996

BrainScaleS-2 — Low-level Configuration

...

def configure_synapses(*args):

"""

Configure routing crossbar, PADI bus, synapse drivers, and parts

of the synapse array.

"""

fisch_builder = fisch.PlaybackProgramBuilder()

fisch_builder.write(anncore_center_ba, fisch.Omnibus(0xffff))

config_builder.merge_back(fisch_builder)

synapse array

correlation_switch_quad = haldls.ColumnCorrelationQuad()

switch = correlation_switch_quad.ColumnCorrelationSwitch()

switch.enable_internal_causal = True

switch.enable_internal_acausal = True

for s in range(4):

correlation_switch_quad.set_switch(s, switch)

for sq in iter_all(halco.ColumnCorrelationQuadOnDLS):

config_builder.write(sq, correlation_switch_quad,

haldls.Backend.Omnibus)

current_switch_quad = haldls.ColumnCurrentQuad()

switch = current_switch_quad.ColumnCurrentSwitch()

switch.enable_synaptic_current_excitatory = True

switch.enable_synaptic_current_inhibitory = True

for s in range(4):

current_switch_quad.set_switch(s, switch)

...
4/10

Expert-only?

PyNN

“PyNN — A Python package for simulator-independent
specification of neuronal network models.”

6/10

https://neuralensemble.org/PyNN/

PyNN

Python-based modeling API for spiking neural
networks

6/10

https://neuralensemble.org/PyNN/

PyNN

Python-based modeling API for spiking neural
networks

Topology-centric description (data flow graph)

6/10

https://neuralensemble.org/PyNN/

PyNN

Python-based modeling API for spiking neural
networks

Topology-centric description (data flow graph)

Neuron and synapse dynamics (cell and synapse
types)

Experiment protocol (“what and when”)

6/10

https://neuralensemble.org/PyNN/

PyNN

Python-based modeling API for spiking neural
networks

Topology-centric description (data flow graph)

Neuron and synapse dynamics (cell and synapse
types)

Experiment protocol (“what and when”)
stimulus (input nodes, e.g., spike trains)

6/10

https://neuralensemble.org/PyNN/

PyNN

Python-based modeling API for spiking neural
networks

Topology-centric description (data flow graph)

Neuron and synapse dynamics (cell and synapse
types)

Experiment protocol (“what and when”)
stimulus (input nodes, e.g., spike trains)
recording (output nodes, e.g., spikes and membrane
voltage)

6/10

https://neuralensemble.org/PyNN/

PyNN

Python-based modeling API for spiking neural
networks

Topology-centric description (data flow graph)

Neuron and synapse dynamics (cell and synapse
types)

Experiment protocol (“what and when”)
stimulus (input nodes, e.g., spike trains)
recording (output nodes, e.g., spikes and membrane
voltage)

Supports different backends (e.g., NEST, NEURON,
SpiNNaker, BrainScaleS)

6/10

https://neuralensemble.org/PyNN/

PyNN.brainscales2 — Example

...

n1 = Population(1, HXNeuron())

n2 = Population(1, HXNeuron())

n3 = Population(1, HXNeuron())

n1.record('spikes')

n3.record(['v', 'spikes'])

Projection(n1, n3, AllToAllConnector)

Projection(n3, n1, AllToAllConnector, receptor_type='inh')

Projection(n1, n2, AllToAllConnector, receptor_type='inh')

Projection(n2, n3, AllToAllConnector, synapse_type=XYZPlastic)

Projection(n3, n2, AllToAllConnector, synapse_type=XYZPlastic,

receptor_type='inh')

stim = Population(1, SpikeSourceArray(...))

Projection(stim, n1, AllToAllConnector)

Projection(stim, n2, AllToAllConnector)

Projection(stim, n3, AllToAllConnector)

...

7/10

https://github.com/electronicvisions/pynn-brainscales

Hidden workflow

1 Collab submits experiment to the neuromorphic central job queuing service

3 PyNN script starts in a containerized environment

Triggers “hardware run”, reads back results and transforms them into PyNN data
structures

7 Collab accesses result data 8/10

Hidden workflow

1 Collab submits experiment to the neuromorphic central job queuing service
metadata is checked (in particular: hardware quota)

2 UHEI queue runner pulls jobs from the central job queue
Request access to hardware resources (conventional and neuromorphic)
As soon as resources are available: job gets scheduled to a cluster node

3 PyNN script starts in a containerized environment
4 Lower software layer:

Initializes network connection to the hardware setup
Compiles initial experiment configuration: Network topology, initial parameters
Compiles dynamic experiment components: External stimulus, timed (re)configuration
(e.g., recording properties, readout of weights)
Upload of both “parts” onto the system (prebuffering)
Triggers “hardware run”, reads back results and transforms them into PyNN data
structures

5 PyNN code accesses result data: Writing files to disk.
6 Job result state (incl. output files) are registered at central job queue
7 Collab accesses result data 8/10

Summary

BrainScaleS: accelerated analog neuromorphic hardware incl. flexible plasticity

Comprehensive software support at expert-level

Entry-level support now under full development (cf. PyNN.brainscales2)

Upcoming hands-on session:
Collab-based access to multiple BrainScaleS-2 systems
Introduction to basic properties of analog neuromorphic hardware:
Membrane dynamics, Stimulus, Recording

Example experiments soon available (cf. HBP Neuromorphic Guidebook)

9/10

https://github.com/electronicvisions/pynn-brainscales
https://electronicvisions.github.io/hbp-sp9-guidebook/

Team BrainScaleS

10/10

