Exceptional service in the national interest

Evaluating complexity and resilience trade-offs in emerging memory inference machines

<u>Christopher H. Bennett</u>*, Ryan Dellana, T. Patrick Xiao , Ben Feinberg, Sapan Agarwal, Suma Cardwell, Matthew J. Marinella, William Severa, Brad Aimone

<u>*cbennet@sandia.gov</u>

Center for Computing Research, Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Problem Statement :
 - Interest in emerging memory for efficient inference engines
- Early results on recurrent neural networks
- Future steps and summary

Evolution of Computing Machinery

Realizing physical matrix kernels

- Ideal Vector-Matrix Mulitply :
 - Electrically realisable using Kirchoff's + Ohm's laws
- Programmable resistors e.g. **ReRAM/MRAM** devices- key component
 - <u>Small voltages to read (inference)</u>
 - Large voltages to program

V^TW=I

W_{3.2}

W_{1,1}

W_{3.1}

W_{2,1}

 V_1 V_2 V_3

5

Challenges for adaptive analog accelerators

- Emerging ReRAM : far from ideal , floating-point <u>'weights'</u>
- Several key problems:
 - Limited resolution
 - Read and write noise
 - Device stochasticity
 - Device non-linearity
 - Device asymmetry
- Preliminary analysis: most severe impact from <u>asymmetric non-linearity</u>
- How can we get around this??
 - A) Increase bio-realism of learning accelerators
 - B) Focus on implementation of pre-trained networks, and use on-chip fine-tuning
 - Seeking natural computing: efficient combination of physical properties and algorithms

Agarwal et al, IJCNN 2016

Major opportunity:

Emerging devices to implement neural network inference

- Focus implementation around highly analog devices with linearity for updating/fine-tuning, if still needed
- Remaining serious issues:
 - Physical limits exist on minimal cycle-to-cycle noise (combination of generic [thermal/Johnson-Nyquist] and device specific [RTN])
 - Retention failure and drift in floating-gate, charge-trapping and ReRAM are real concerns
- Possibility to do mixed-computing using low-precision devices and high precision CMOS - > we explore limits of this using <u>highly analog weights</u>

Source: Fuller , Agarwal, et al, IEEE/Science

Source: Sun, et al , IEEE

Source: Nandakumar et al, Frontiers

7

NVM inference systems- overemphasis on CNNs

- Kernel-wise multiplication can result in massive crossbar requirements
 - Issues with energy and parasitics in large crossbars
 - ISAAC design: 40mW + /tile, 20W for chip.
 - 10-50x what we need for true low power computation (<1pJ per MAC)
- Massive opportunity for efficient synapse and neuron activation multiplexing -"Mosaics" framework
- We focus on time-multiplexed activations

Source: Shafiee et al, ISCA 2016

Outline

- Problem Statement :
 - Interest in emerging memory for efficient inference engines
- Early results on recurrent neural networks
- Future steps and summary

Machine learning tasks

Sandia Nationa Laborat

- In increasing order of difficulty:
 - MNIST: small images
 - 60k training, 10k test
 - MLP typical result: 96%+
 - CNN typical result: 98%+
 - F-MNIST: small images
 - 60k training, 10k test
 - MLP typical result: 83%+
 - CNN typical result: 91%+
- Presentation style for recurrent networks
 - Standard image presentation is subdivided into pixel-wise partitions that correspond to number of time steps, T
 - *T* must therefore be a natural divisor of *Num_pixels*

MNIST Task

1568894 202856557 63880154/5 2198033641 7914992451 3739367243 3516749349 0160528887 567289 0471266010

Fashion-MNIST Task

<u>Methodology I</u>

Networks were trained upfront using Keras/Tensorflow 2.2

Equivalence between these effects given by:

- MNIST, Fashion-MNIST
- Neural networks were pre-trained with, and without, a gaussian injected regularization term applied at pre-activation of neurons
 - Applied to activations in both convolutional filter crossbars and dense-layer crossbars

 $\sigma_{\rm neu} = \sigma_{\rm syn} \left(W_{\rm max} - W_{\rm min} \right) \sqrt{n} \, \gamma_{\rm act}$

During test-time, synaptic noise applied to all synapses (devices) in crossbars

<u>Methodology II</u>

- We propose a novel design for recurrent neural networks exploiting natural time re-use in a dense NVM crossbar
 - Less peripheral overhead than complex software RNN schemes such as Gated Recurrent Unit (GRU), Long Short Term Memory (LSTM)
 - Only Rectified Linear Units (ReLU)-- > less complex circuit than tanh() etc
- We consider both normal and noise injected cases
 - As in CNN case, Gaussian noise injected before the ReLU activation

Methodology III

- Test-set noise added on top of internal (synaptic) noise
 - Gaussian: test_set + test_set_noise(mean=0,std = sigma).
 - Additive = more info loss
 - Speckle: test_set*test_set_noise(mean=0,std=sigma)
 - Scaled = less info loss
 - Salt and pepper noise (random_noise from sklearn); proportion of total pixels pushed to max/min vals.
 - Direct info loss, but *localized*

<u>Result I</u>

- Given training optimization (best optimizer and learning rates chosen for each system),
 - CNN systems , deployed with realistic (2.5%) internal noise, outperform RNN and MLP on both tasks
 - RNN systems, achieve near parity when test-set noise is applied, and <u>beat</u> <u>CNN system on harder task if effects combined</u>
- RNN systems perform best at a lower number of time-steps
 - Internal system noise is sub-linearly additive over temporal cycles (some cancellation exists)

Architecture	Noise Scenario			
	Internal (σ_{syn}^*)	External (σ_{te}^*)	Both Effects	
MLP- MNIST	96.8%	94.1%	93.1%	
RNN - MNIST	97.4%	95.1%	94.9%	
CNN-MNIST	98.5%	96.7%	96.05%	
MLP- f-MNIST	82.2%	$\begin{array}{c} 69.91\% \\ 84.22\% \\ 57.91\% \end{array}$	62.35%	
RNN - f-MNIST	86.3%		81.11%	
CNN-f-MNIST*	85.1%		42.35%	

<u>Result II</u>

- Broader sweeps conducted on both effects
 - Regularization is useful in both deployed CNN, RNN systems
 - On easier task (MNIST), RNN does not show much benefit , but shines on fMNIST - > CNN like results with less complexity

<u>Results III</u>

- Broader sweeps of RNN networks to test set noise were also conducted
 - Without regularization, the NVM optimized RNN collapses in performance for gaussian & s&p cases (most info lost).
 - The resilience provided by small injected noise (level 1= 0.1) in Speckle , Gaussian is impressive !!
 RNN Impact of Noised Input: S&P

<u>Results IV</u>

- Same sweeps conducted on trained small CNN networks
 - Appropriate levels of noise <u>extend usable margin of the networks</u> in adversarial/noisy environments
 - Only fMNIST results shown but results nearly equivalent for mNIST

1.2

Training energy estimates

- Simple python benchmarking script used to estimate energy estimates of online NVM learning for considered systems
 - Dominated by VMM (crossbar charging) and neuron activation
 - Maxpool , softmax operations are negligible
- While all systems use ReLU activations , due to time multiplexing, RNN systems benefit expend ~<u>15-40x less energy than CNN</u>
 - MLP systems are still least energy expensive overall, but suffer accuracy penalty

	Noise Mode	Synapse Type		
		Total Energy/Op	VMM Op	Neuron Activation Op
TaO _x - 10 nm Ta- 50 nm	$\implies MLP ReRAM* \\ PNN P_{0}PAM* +$	4.24 nJ	4.22nJ	15pJ
TiN	CNN ReRAM* †	35.6nJ 480 nJ	35.5nJ 479 nJ	358 pJ
n-type poly	MLP SONOS*	6.04 nJ	6.02nJ	15pJ
top oxide	RNN SONOS* † CNN SONOS*	42.7nJ 2.084 μJ	42.7nJ 2.084µJ	66pJ 358 pJ
a) (b)				

Outline

- Problem Statement :
 - Interest in emerging memory for efficient inference engines
- Early results on recurrent neural networks
- Future steps and summary

Further analysis of RNN systems

- Vanishing gradient issues must be further investigated in stacked simple RNN-NVM blocks
 - At inference stage, the problem will be far less of a problem than in training
 - But, may limit ultimate application of the approaches to relatively simple tasks (LSTM/GRU better to capture short + long term correlations)
- Temporal skip connections are an additional method to explore for further regularization + better generalization
 - Has been explored in LSTM, but not vanilla RNNs yet
- Natural attraction basins of RNNs can be analytically shown to help explain ergodic behavior (especially to test-set noise)

Figure 3: Sample usage examples for the Skip LSTM with $\lambda = 10^{-4}$ on the test set of MNIST. Red pixels are used, whereas blue ones are skipped.

Source: Campos et al, ICLR 2018

Demonstrations of RNN learning

- Recently, 3x3 outer-product-learning was conducted with an array of ECRAM devices, and larger array is now being fabricated
- Ideal platform to implement RNN inference and learning
 - High device resistance -> low parasitics in demonstrator crossbar
 - Extreme analog capability
 - Low cycle to cycle noise (<0.5%) has been demonstrated -> good for large T

Source: Li, Xiao, Bennett, Fuller, Marinella, Talin, et al, Frontiers, 2021 (Accepted)

Summary

Take away points

- Time-multiplexing is a promising approach to implement energy efficient inference
- A new efficient RNN design has been proposed and simulated that:
 - Can approach or even exceed CNN performance given certain noise conditions
 - Exceeds a standard MLP in accuracy on standard ML tasks
 - Can pave the way to more energy efficient inference (10x or greater energy efficiency)
- Noise regularization at train time is a promising method to resist internal and external noise when deployed
 - Approach works on all considered neural networks, though most important/effective in CNN structures

Next Steps

- Algorithmic explorations of sources and limits of natural RNN noise resilience
- Benchmarking of RNN scheme on more state-of-art tasks
- Demonstration of ideas in crossbar prototype(s)
- New version of CrossSim released: supporting inference + RNN

ROSS SIM

https://cross-sim.sandia.gov

Thank you! Questions?

Contact me at <u>cbennet@sandia.gov</u> if you want to ask at a later time.