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Founded 1995 by Prof. Karlheinz Meier (†2018)

1995 HDR vision sensors 

1996 analog image processing 

2000 Perceptron based analog neural networks: 
EVOOPT and HAGEN 

2003 First concepts for spike based analog neural 
networks

2004 First accelerated analog neural network chip 
with short and long term plasticity: Spikey

Electronic Vision(s)
Kirchhoff Institute of Physics, Heidelberg University

HAGEN (2000): 
Perceptron-based Neuromorphic chip

introduced:

• accelerated operation

• mixed-signal Kernels

SPIKEY (2004):
spike-based Neuromorphic chip

introduced:

• fully-parallel Spike-Time-
Dependent-Plasticity

• analog parameter storage for 
calibratable physical model
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Neuromorphic computing (analog or digital): 

• at least similar performance

• faster learning

• lower energy consumption

• closer to biological concepts

since the year 2000: 
Computers became more
brain-like
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emulate relevant subsystems of biological brains 
including learning and development

to solve serious AI problems like complex games or 
navigating natural environments

Neuromorphic Computing
”Learning from nature to advance future computing.”

future computing based on 
biological information 

processing

understanding biological 
information processing

NVIDIA DGX A100Cerebras CS-1

→ requires circuits and architectures for
scalable neuromorphic computing systems:

1. in size – problem size, dimensionality of sensor date

2. in speed – to find a solution, lots of trial runs needed

3. in model complexity – to model biology appropriately

4. in learning capabilities – problem complexity

5. while keeping energy consumption reasonable

Perceptron-based digital machine learning



Spike-based neuromorphic systems worldwide –
State-of-the-art and complementarity

Many-core (ARM) architecture

Optimized spike

communication network

Programmable local learning

x0.01 real-time to x10 real-time

Full-custom-digital neural circuits

No local learning (TrueNorth)

Programmable local learning (Loihi)

Exploit economy of scale

x0.01 real-time to x100 real-time

Analog neural cores

Digital spike communication

Biological local learning

Programmable local learning

x10.000 to x1000 real-time

TrueNorth

Biological realism

Loihi

Ease of use
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numerical model : digital simulation

represents model parameters as binary numbers :

→ integer, float, bfloat16

physical model : analog Neuromorphic Hardware

represents model parameters as physical quantities :

→ voltage, current, charge



Analog computing helps for scaling-up speed :
Neuromorphic Computing with physical model systems

• Consider a simple 
physical model for the 
neuron’s cell 
membrane potential V:

( )VEg
dt

dV
C −= leakleakm Cm

R = 1/gleak

Eleak

V(t)

→ accelerated neuron model
dt

dV

dt

dV

VLSIbio



continuous time
• fixed acceleration factor (we use 103 to 105)

no multiplexing of components storing model
variables
• each neuron has its membrane capacitor
• each synapse has a physical realization 20

• representing model 
parameters as physical 
quantities :
voltage, current, charge
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Analog helps for energy-efficient scaling-up of model complexity :
neurons built from parameterized dendritic compartments

photograph of the BrainScaleS 1 
neuromorphic chip • modular structure

• Adaptive Exponential I&F model 
• full set of ion-channel circuits 

for each compartment
• 24 calibration parameters per 

compartment
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complex neurons can be build
by connecting individual 
compartments



silicon wafer with BSS ASICs wafer module hybrid system

BrainScaleS-1 : large-scale analog
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c
c

custom circuits locally interconnect 
the chips on the wafer 
• creates wafer-wide network
• distributes communication load

wafer-to-wafer 
routing circuits

printed circuit 
board



BrainScaleS-1 - large scale analog network model
- Synfire chain with feedforward inhibition

- 19000 neurons (190 chain links)

- Over 1.4 million synapses

- Acceleration: 10,000

→ compute performance equivalent to 14 billion
synapses and 19 million neurons in real time 

work by Jakob Kaiser [Master Thesis 2020], Sebastian Schmitt

Talk:

From clean room to machine room: towards accelerated cortical simulations 

on the BrainScaleS wafer-scale system (S. Schmitt)

Today 17:20 (CET)

next step: cortical column model currently under development
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Analog spike-based
Bayesian Inference

● implements generative models

● applications to image datasets and quantum states

● analog neurons autonomously sample from learned

distributions

● no numerical calculations

Work by: A. Baumbach, S. Czischek, D. Dold, T. Gierlich, A. Kungl, M. Petrovici  [D. Dold et al. 2019], [A. Kungl et al. 2019], [S. Czischek et al. 2020]



Analog neuromorphic hardware ≠ no software
after training:

Non-Turing analog 
computing system 
performs autonomously

but

Turing-based digital 
computing is used in 
multiple places:

• training

• system initialization

• hardware calibration

• runtime control

• input/output data 
handling

BraScaleS-2 User high-level APIs:

● hxtorch for PyTorch

● PyNN.brainscales2

Components:

● Hardware Testing & Calibration

● Hardware Configuration

● Experiment Encapsulation & 
Scheduling

Operation:

● Monitoring

● Resource Management

● Software Environment

Talk on Friday

Work by:

E. Müller, O. Breitwieser, S. Schmitt, C. 

Mauch, P. Spilger, Y. Stradmann, H. Schmidt, 

J. Montes, A. Emmel, M. Czierlinski, J. 

Kaiser, S. Billaudelle,F. Ebert, M. Güttler, J. 

Ilmberger, A. Leibfried, J. Weis.



Optimum combination of analog and digital processing allows
scaling-up of learning capabilites

memory
controller

high-bw link

NOC high-bandwidth link:

vector unit → NM core

• weights

• correlation data

• routing topology

• event (spikes) IO

• configuration

processor
vector unit

analog 
core

high-bw
link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

processor
vector unit

analog core

high-bw link

cacheNOC

special function tile:

• memory controller

• SERDES IO

• purely digital function unit

Network-on-chip:

• prioritize event data

• unused bw for CPU

• common address space 
for neurons and CPUs
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• on-chip training with

complex learning

rules

• learning capabilities

scale with system

size

• can cope with

scaled-up speed of 

accelerated

physical model

BrainScaleS-2 : analog coprocessor with digital learning support 



• 65nm LP-CMOS, power consumption O(10 pJ/synaptic event)

• 128k synapses

• 512 neural compartments (Sodium, Calcium and NMDA spikes)

• two CPU cores for learning (PPU)

• PPU internal memory can be extended externally 

• fast ADC for membrane voltage monitoring

• 256k correlation sensors with analog storage (> 10 Tcorr/s max)

• 1024 ADC channels for plasticity input variables

• 32 Gb/s neural event IO

• 32 Gb/s local entropy for stochastic neuron operation

BrainScaleS-2: two cores with neuromorphic coprocessors

4x8 mm2



credit card size: 85 x 54 mm2

Application: edge-AI with BrainScaleS

• Event-based direct IO

• neuromorphic detectors

• neuromorphic sensors

• event-based cameras

• bio-sensors

• etc

• Classic IO (FPGA subsystem)

BrainScaleS mobile system

• Small, cost-efficient system

• low-power FPGA base board

• interface board for 

BrainScaleS ASIC

• ASIC carrier board

• Multi-chip operation with different 

ASIC carrier boards

• Direct applicable for applications

Analog vector-matrix multiplication

• allows rate-based modeling on 

same chip

• training with PyTorch and 

hardware-in-the-loop

Benchmarks:

MNIST handwritten digits

● 3-layer CDNN

○ 98.5 % on CPU

○ 98.4 % on BSS-2

Human activity recognition

● 6 activities of daily living

● 3-layer CDNN

○ 89.7 % on CPU

○ 88.8 % on BSS-2

work by Johannes Weis, Arne Emmel

Weis, J. et al. (2020): Inference with Artificial Neural 

Networks on Analog Neuromorphic Hardware. ITEM 

2020, IoT Streams 2020.

Spilger, P. et al. (2020): hxtorch: PyTorch for 

BrainScaleS-2. ITEM 2020, IoT Streams 2020.
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Fast and deep: 
energy-efficient neuromorphic learning with first-spike times

Lightning talk on Friday,  Julian Göltz, Laura Kriener, et al. 2019, https://arxiv.org/abs/1912.11443



Training recurrent and multi-layer SNNs using surrogate gradients

○ Flexible in-the-loop training based on PyTorch

○ Feed-forward as well as recurrent SNNs

○ Arbitrary choice of loss function and regularization

○ Auto-differentiation for analog hardware

○ Robust to fixed-pattern deviations of analog circuits

B. Cramer, S. Billaudelle, F. Zenke, et al. "Training spiking multi-layer networks with surrogate gradients on an analog neuromorphic substrate." arXiv preprint arXiv:2006.07239 (2020).

MNIST: 97.6 %, 85k images/s, 2.4 

μJ/image

SHD: 80.6 %



Analog model of insect navigation on 
HICANN-X

Neuromorphic insects navigate autonomously back to their nests 

after searching for food.

Body as digital model on analog neurons on 

internal SIMD CPU neuromorphic core

K. Schreiber, et al. “Insectoid path integration on accelerated 

neuromorphic hardware” in preparation

A. Leibfried: Migration from prototype to full-scale version

Outbound journey

Return trajectory

S. Billaudelle, Y. Stradmann, and K. Schreiber, “Versatile emulation of spiking neural

networks on an accelerated neuromorphic substrate,” on Circuits and …, 2020, [Online]. 

Available: https://ieeexplore.ieee.org/abstract/document/9180741/.



Structural plasticity on BrainScaleS-2

● On-chip structural plasticity

● Self-configuring receptive fields

● Efficient use of synaptic resources

S. Billaudelle, B. Cramer, et al. "Structural plasticity on an accelerated analog neuromorphic hardware system." Neural Networks 133 (2021): 11-20.



46

Control of criticality and 
computation in SNNs with plasticity

● Distance to a critical point of recurrent SNN was changed by 
adapting the input strength under homeostatic regulation

● Evaluating performance on a set of tasks of varying 
complexity at - and away from critical network dynamics 
shows:

○ Only complex task profit from critical dynamics

○ Simple tasks even suffer

● Collective network state has to be tuned to task 
requirements by changing the input strength

● Network then quickly self-organizes to desired state

B. Cramer, D. Stöckel, M. Kreft, M. Wibral, J. Schemmel, K. Meier, V. Priesemann "Control of 

criticality and computation in spiking neuromorphic networks with plasticity." Nature 

communications 11.1 (2020): 1-11. work by B. Cramer, M. Kreft, J. Zierenberg and V. Priesemann

● Hierarchy of time scales in homeostatically regulated neural 
networks in excitation-dominated regime

● Exploit full speedup by on-chip implementation with 512 LIF 
neurons

● Chip consumes only 100 mW during emulation

● Setup can be used to classify spatio-temporal pattern of 
varying complexity



Multi-Compartment Neurons on BrainScaleS-2

● User-defined morphologies
● Parameter adjustable for each compartment
● Dendritic spikes
● No additional energy consumption
● Acceleration factor 1000

work by Jakob Kaiser, Sebastian Schmitt - publication under review

coincidence

detection



Summary: analog neuromorphic computing
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• successfully demonstrated gradient and plasticity-based training

• spike-based DNNs can be trained for sparseness and low latency

• rate-bases CDNN test results comparable to numerical solutions 

• still a lot of software needed to maintain flexibility,

user-friendliness has high priority → test it in the tutorials

• realization as analog co-processor provides a scalable solution

• BSS-2 demonstrates analog in-silico realization of in-memory 

computing for neuroscience and machine learning 

• next step: combine BSS-1 wafer-scale technology with BSS-2 

analog coprocessor architecture to achieve scaling in
• size

• speed

• model-complexity

• learning capabilities

• energy


