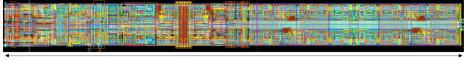


BrainScaleS-1

From Clean Room to Machine Room

Sebastian Schmitt

On behalf of Electronic Vision(s)

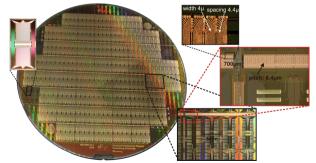

NICE20201: 2021-03-16

Physical Modelling – Analog Neuron Circuits

layout drawing of two neurons: 150x20 μm^2

- Adaptive Exponential Integrate and Fire (AdEx) Model
- Dedicated circuits in every neuron for:
 - Resting potential
 - Reset potential
 - Threshold potential
 - Reversal potentials
 - Refractory period
 - Membrane time constant
 - Synaptic time constants
 - Adaption and
 - Exponential term

 Accelerated dynamics compared to biological real-time:

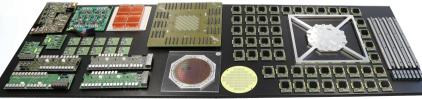

$$au = C \cdot R, frac{ au_{hw}}{ au_{bio}} = 10^{-4}$$

 $au_{hw} = 1 \, \mu s \Rightarrow au_{bio} = 10 \, ms$

 Also every synapse is represented by dedicated circuitry matching the speedup

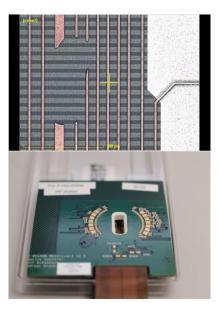
BrainScaleS-1 ASIC



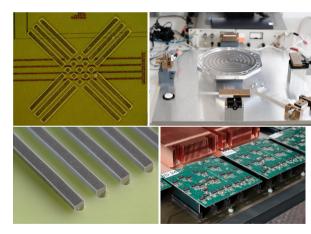

- ▶ 512 <u>analog</u> neurons, 110 000 plastic synapses
- ▶ <u>Digital</u> communication → mixed-signal system
- ► Sparse crossbar switches connecting busses → programmable network connections
- Analog parameter storage (floating gates)
- ▶ Postprocessing (IZM Berlin) \rightarrow wafer scale networks

BrainScaleS Wafer Module

- 20 cm Wafer, 180 nm CMOS
- 14 layer main PCB
- 48 Kintex-7 FPGAs (TU Dresden)
- Only one 48 V external power supply
- Aux. Boards (e.g. for analog readout)
- Connected via ethernet to 48 Gbit/s switch

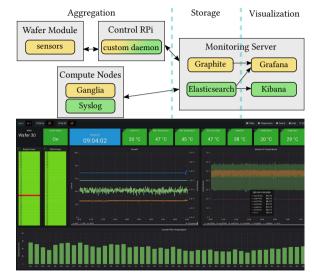


Tests Prior to Assembly

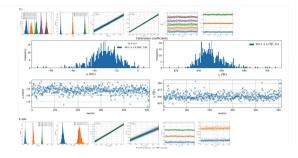

- Optical inspection on wafer prober
 - Find imperfections, e.g., of post processing prior to assembly
- Functional tests with a needle card
 - Differentiate between "inherent" and system induced problems

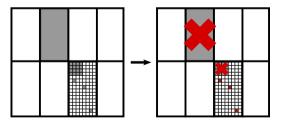
Wafer Main PCB Marriage

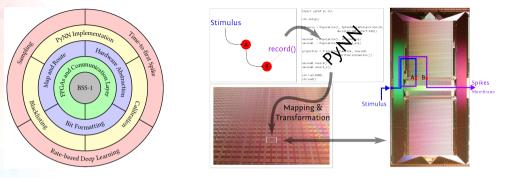
- Optical alignment between wafer and main PCB
- Contacts are tested via the FPGA connectors with special boards (Sabanci University)
- Iterative procedure until alignment is sufficient



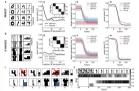
Machine Room with 20 BrainScaleS Wafer Modules

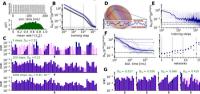

Monitoring


- Machine room and wafer modules are monitored
- About 1200 time-series data sources within one wafer module
- Important sensors like wafer temperature are read out every few seconds.
- Events for powering parts on/off
- Alerts are generated and reported via mail and chat

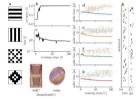

Calibration and Availability Management

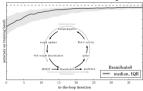
- Calibration of analog parameters
 - 111 calibration steps
- Hardware tests:
 - Communication link tests (JTAG, highspeed)
 - Digital memory checks of 42 MiB per wafer
- Availability management:
 - Derived resource availability from calibration and digital memory checks
 - Experiment specific resource availability flexibly adjustable via cli
- Tests and calibration are fully automated and executed periodically to track hardware state


From Network to Hardware

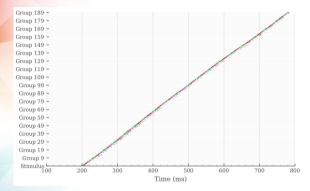

- The BrainScaleS operating system converts from a biological network description in pyNN to a hardware configuration
- Spike input and output via the FPGAs and analog recordings are managed
- ► For details → E. Müller: "BrainScaleS: Development Methodologies and Operating System" Friday, 19 March 2021

Experiments on BrainScaleS

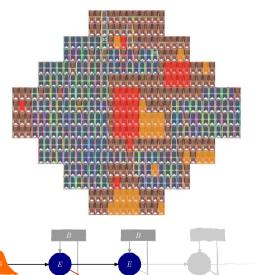

 "Accelerated physical emulation of Bayesian inference in spiking neural networks"


 "Stochasticity from function - why the Bayesian brain may need no noise"

 "Fast and deep neuromorphic learning with time-to-first-spike coding"

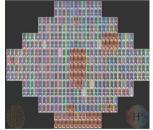


 "Neuromorphic Hardware In The Loop: Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System"



More results can be found in about 60 theses (PhD plus undergraduate)

Wafer Scale Feed-Forward Chain

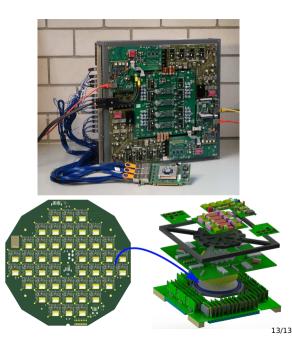


- Wafer Scale Feed-Forward Chain
- 230 chips used:
 - 19000 logical neurons (76000 neuron circuits)
 - 1.4 million synapses

Towards Wafer Scale Full-Scale Cortical Microcircuit Model

- Towards emulation of the "Cortical Microcircuit Model" (Potjans/Diesmann (2014))
- Full model consists of 80000 neurons
 - Downscaling to 10% to fit on wafer

also:


- ► CUBA \rightarrow COBA synapses
- Reduced external drive
- Simulation studies of influence of paramater variations

12/13

Summary and Outlook

- BrainScaleS demonstrates "From Clean Room to Machine Room" and "From Network to Hardware" of accelerated mixed-signal wafer scale neuromorphic computing
- ► In the pipeline:
 - ► On-module analog digitization → a fully self-contained module
 - Horizontal configuration complying with open compute rack standard
 - Next-generation interim solution until BrainScaleS-2 wafer scale is done
 - Interconnection via EXTOLL (cf. poster by T. Thommes)

