Why is Neuromorphic Event-based
Engineering the future of Al?
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Neuromorphic Started in a still very
active group that meets every year in
Telluride for hands on projects and

talks...
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Why Neuromorphic?
Data deluge
* In 2010 the world generated more than 1.2 Zetta bytes (10721) of new data
* Equivalent of 300000km of DVD stack (distance between the earth and the moon)
* The amount of data increases faster than the computing power

e Quest for Local computation

I Overload [
Global information created and available storage
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Why Neuromorphic?

Computer

ATIS

VS.
Conventional Camera
Parallel

 Low Power & Low Latency  Low Power Inference
e High Temporal resolution * Go beyond processor-memory
* Light independent bottleneck

* Real time processing beyond 1KHz * Real time processing beyond 1KHz



Data Space of Events e
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ATIS "t . ... .asynchronous
vS. | g rgray-level
Conventional Camera Vi @  -events

static
background

Y 300\

 Amplitude sampling
* Information is sent when it happens

« When nothing happens, nothing is sent or
processed

e Sparse information coding
* Time is the most valuable information



Current Alternatives

Generate frames (binary, grey level,...)
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Why Event Based sensors?
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Time (milliseconds) -
Dataset PokerDVS N-MNIST DvsGesture NavGesture-walk
(Mean Event Rate 170.4 ev/ms 13.6 ev/ms 56.9 ev/ms 188.6 ev/ms
& Sensor Size) 35x35 28x28 128x128 304x240
1. Time Window (ms) 1 10 100 1 10 100 1 10 100 1 10 100
2. Mean Number of events in TW | 101 390 486 22 84 229 53 340 1751 285 2818 13279
(percentage of active pixels) 8%) | 32%) | 40%) | 3%) | (11%) | 29%) | <1%) | @%) | (11%) | <1%) | @4%) | (18%)
3. Max Number of events in TW 356 848 1052 223 312 597 467 2056 9191 2599 18296 | 68128
(percentage of active pixels) 29%) | (69%) | (86%) | (28%) | (40%) | (76%) | (3%) (13%) | (56%) | (4%) 25%) | (93%)
g Working Memory Size (kB) | ¢ 3.1 39 |02 |07 18 | 04 27 140 | 23 25 | 1062
ynamic - Average case
) Working Memory Size (B) 1 g |68 |84 |18 |25 |48 |37 164 | 735 | 208 | 1463 | 545.
ynamic - Worst case
6. Allocated Memory Size (kB) 9.8 9.8 9.8 6.3 6.3 6.3 131 131 131 584 584 584
7. Memory ratio dynamic/static | g | 330, | 409 | 3% 1% | 29% | 1% | 2% 1% | 1% | 4% 18%
(Average Case)
8. Memory ratio dynamic/static | o5 | o, | 8% | 28% | 40% | 76% | 3% 13% | 56% | 4% 25% | 93%
(Worst Case)




Existing Neuromorphic Processing Hardware is
based on silicon neurons

Qualcomm Zeroth (2013) IBM TrueNorth (2014) Intel Loihi (2017) BrainChip (2019)

Vdd
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Existing hardware is based on the concept of replicating biological
neurons into silicon



This approach is limited: No real theory available,
wastefull in silicon area, general computation limited (materials,
theories, ...). We still know so little of the Brain.

41 Y2
Replicating nature’s solutions is not always the optimal path to solve
an engineering problem.

- |

Understanding rather than replicating




Neuromorphic Computing, an old story!

... Biological neural network
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Historical memory
*Analog levels

Warren McCulloch

Walter Pitts

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” Bull. Math. Biophysics, no. 5, pp. 115-133, 1943.

A Logical Calculus of 1deas Immanent in Nervous Activity

A Logical Calculus of 1deas Immanent in Nervous Activity

parent that every idea and every sensation is realized by activity
within that nct, and by no such activity are the actual afferents
fully determined

There is no theory we may hold and no observation we can make
that will retain so much as its old defective reference to the facts |
if the net be altered. Tinnitus, paraesthesias, hallucinations, de- I
lusions, confusions and disorientations intervene. Thus empiry
confirms that if our nets are undefined, our facts arc undefined, |
and to the “real” we can attribute not so much as one quality
or “form.” With determination of the net, the unknowable object |
of knowledge, the “thing in itself,” ceases 1o be unknowable.

To psychology, however defined, specification of the net would
contribute all that could be achicved in that ficd—cven if the
analysis were pushed to ultimate psychic units or “psychons,” for
a psychon can be no less than the activity of a single newron.
Since that activity is inherently propositional, all psychic events |
have an intentional, or “semiotic,” character. The “all-or-none’’_|
law of these activities, and the conformity of their relations to |
those of the logic of propositions, insurc that the relations of

observations and of these to the facts is all too clear, for it is ap- l
|
|
|

- EXPRESSION FOR THE FIGURES
In the figure the neuron ¢; Is always marked with the numeral ¢ upon the
body of the cell, and the corresponding action is deooted by ‘N with 1 as sub-
script, as in the text.
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Perceptron: first neuromorphic engine

L,/”

Perceptron

40N

(Robert Hecht-Nilsen:
Neurocomputing, Addison-
Wesley, 1990)

Frank Rosenblatt

[1] F. Rosenblatt, “The perceptron: a probabilistic
model for information storage and organization
in the brain.,” Psychological Review, vol. 65, no.

6, pp. 386-408, 1958.

Psychologicol Review
V.oylf‘és.‘;to. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN?

F. ROSENBLATT
Cornell Aeronawtical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2, In what form is information
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

and the stored pattern. According to
this hypothesis, if one understood the
code or “wiring diagram' of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the “memory traces' which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory” of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain



1980’s Neurocomputers...

* Siemens : MA-16 Chips (SYNAPSE-1 Machine)
* Synapse-1, neurocomputer with 8xM-A16 chips
* Synapse3-PC, PCl board with 2xMA-16 (1.28 Gpcs)
* Adaptive Solutions : CNAPS
* SIMD // machine based on a 64 PE chip.
* |IBM : ZISC
* Vector classifier engine
* Philips : L-Neuro (M. Duranton)
* 1st Gen 16PEs 26 MCps
* 2nd Gen 12 PEs 720 MCps
* +Intel (ETANN), AT&T (Anna), Hitachi (WSI), NEC, Thomson (now
THALES), etc...




How to encode numbers with neurons?
Necessity to find an alternative to binary

Development of Elementary Numerical
Abilities: A Neuronal Model

Stanislas Dehaene
INSERM and CNRS, Paris

Jean-Pierre Changeux
[nstitut Pasteur, Paris

Average activity
1
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Figure 4. Average activity of numerosity clusters when random sets
of 1, 2, 3, 4, or 5 objects were presented for input. For each input
numerosity, only a small number of clusters were selectively activated
(e.g, clusters 1, 2, and 3 responded only when a single object was
presented). The activity peaks were lower and wider for larger nu-
merosities, implying a decrease in discriminability with increasing
numerosity (Fechner's law).



The Neural Engineering Framework
Chris Eliasmith and Charles H. Anderson

Representation Transformation
- A y(t)
2 x(t)
&
Stimulus (x) a’i( t) bj( t)

Representation: A multi-dimensional stimulus x(¢) is nonlinearly encoded as a

spike rate a;(x(t))—represented by the neuron tuning curve—that is linearly

decoded to recover an estimate of x(t), X(t) = >, a;(x(t))¢F, where ¢ are
the decoding weights.



Variety of synaptic responses

Kernel Type Expression for Impulse Response Typical Function (Spikes at 7= 0, # = 100)
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Time and delays plays an important role

* Progresses in Neuroscience demonstrated the weaknesses of the perceptron approach and
introduced LTP/LTD and STDP

— 1962 - The teams of Mark Bear and Robert Malenka report that prolonged low-frequency stimulation evokes hamosynaptic LTD
— 1991-1993 - Tsodyks, Gerstner, van Hemmen develop asseciative mode's with spiking neurons
— 1994 - Dominique Debanne shows that the timing of postsynaptic depolarization determines the sign of plasticity }

I |- 1954 - Greg Stuart and Bert Sakmann find back-propagating acton potentials in pyramidal cell dendrites

— ~1995 - Gina Turrigiano et al report homeostatic plasticity of mtrinsic and synaptic properties

— 1995-1997 - Henry Markram et al report the existence of neocertical STD?

— 1996 - Wulfram Gerstner et al propose a model for temporally asymmetric spike tming feaming in bam owl auditory development

— 1996 - Larry Abbott and Ken Blum's timing-dependent plasticity model of rodent navigation

— 1997 - Jeff Magee and Dan Johnston report that precisely timed back-propagating action potentials act as an associative signal in LTP
— 1997 - Curtis Bell and colleagues discover temporally inverted timing-dependent plasticity in the electric fish

— 1998 - Mu-ming Poo's team find in-viva STDP in Xenopus laevis tadpole tectum

— 2000 - Sen Song and Larry Abbott coin the STDP abbreviation

— 2001 - Yang Dan's team reparts in-vivo STOP in humans

— 2001 - Sjostrom, Turrigiano, and Nelson show that ratz, timing, and depolarization-dependent plasticity co-exist at the same synapse
— 2002 - Rob Froemke and Yang Dan demonstrate that STDP summiates nen-linearly

— 2001-2007 - The teams of Bonhoeffer, Dan, Shulz, and Feldman report in-vve STOP in rodents

— 2004 - The Martin Heisenberg |ab finds timing-dependent plasticity in Drosaphila

— 2005 - Froemke et al report that STDP is location dependent

— 2006 - Sjostrom and Hausser and Greg Stuart’s team find inverted STDP at inputs onto distal dendrites

— 2007 - Cassenaer and Laurent report STOP in the locust

v 2007-2009 - The teams of Jason Kerr, Alfredo Kirkwood and Guo-giang Bi teams demonstrate neuromodulation of STD?

~ Mechanisms of LTP and LTD
s & parameterization

time

from Markram et al. “A history of spike-timing-dependent plasticity,” in Frontiers in Synaptic neuroscience, Vol 3,
August 2011



How to encode numbers ?

(we§ Tsyn)

(e Tsyn+f(2))
—— V-synapse

At = f(x) = Tin + . Te0q
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ARTICLE Communicated by Terrence Sejnowski

STICK: Spike Time Interval Computational Kernel, a
Framework for General Purpose Computation Using
Neurons, Precise Timing, Delays, and Synchrony

Xavier Lagorce
xavier.lagorce@upme.fr
Ryad Benosman V

ryad.benosman@upmc.fr
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Computation of the Optical with STICK




HOTS: A Hierarchy Of event-based Time-Surfaces
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Most Work in Neuromorphic Vision relies on

computing Equations

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 2, NO. 2, 2017 1

Event-based, 6-DOF Camera Tracking from
Photometric Depth Maps

Guillermo Gallego, Jon E.A. Lund, Elias Mueggler, Henri Rebecq, Tobi Delbruck, Davide Scaramuzza

Abstract—Event cameras are bio-inspired vision sensors that output pixel-level brightness changes instead of standard intensity
frames. These cameras do not suffer from motion blur and have a very high dynamic range, which enables them to provide reliable
visual information during high-speed motions o in scenes characterized by high dynamic range. These features, along with a very low
oower consumotion. make event cameras an ideal comolement to standard cameras for VR/AR and video game applications. With

Home | Journals = IEEE Transactions on Pattern Analysis and Machine Intelligence = Preprints

Real-time high speed motion prediction using fast aperture-
robust event-driven visual flow

PrePrints pp. 1-1,
DOI Booknark: 10.1108/TPAMI.2020.3010468

Keywords
Visualization, Cameras, Heuristic Algorithms, Vehicle Dynamics, Apertures, Robot Sensing Systems, Event Driven,
Neuromorphic, Optical Flow, Motion Prediction

Authors

Himanshu Akolkar, D« it of O University of F 6614 F F
akolkar@pitt.edu)

Sio Hoi leng, ISIR, University Pierre et Marie Curie, Paris, Paris France 75252 (e-mail: sio-hoi.ieng@upmc.fr)

Ryad Benosman, ISIR, University Pierre et Marie Curie, Paris, Paris France 75252 (e-mail: ryad.benosman@upmc.fr)

Abstract
Optical flow is a crucial component of the feature space for early visual processing of dynamic scenes especially in new
applications such as self-driving vehicles, drones and autonomous robots, The dynamic vision sensors are well suited for such
applications because of their asynchronous, sparse and temporally precise representation of the visual dynamics. Many

g for visual flow for these sensors suffer from the aperture problem as the direction of the
estimated flow is governed by the curvature of the object rather than the true motion direction. Some methods that do
overcome this problem by temporal windowing under-utilize the true precise temporal nature of the dynamic sensors. In this
paper, we propose a novel multi-scale plane fitting based visual flow algorithm that is robust to the aperture problem and also
computationally fast and efficient. Our i perf well in many ranging from fixed camera recording simple
geometric shapes to real world scenarios such as camera mounted on a moving car and can successfully perform event-by-
event motion estimation of objects in the scene to allow for predictions of up to 500 ms i.e. equivalent to 10 to 25 frames with
traditional cameras.

United States (e-mail: 1

accurate, low-latency tracking of an event camera from an existing
built via classic dense reconstruction pipelines. Our approach tracks the
nt, thus virtually eliminating latency. We successfully evaluate the method
> the i of the event pipeline works
unaccessible to standard cameras.
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Fig. 1: Sample application: 6-DOF tracking in AR/VR (Aug-

Motion Equivariant Networks for Event Cameras
with the Temporal Normalization Transform

Alex Zihao Zhu' Ziyun Wang' Kostas Daniilidis '

Abstract

In this work, we propose a novel transformation
for events from an event camera that is equivari-
ant to optical flow under convolutions in the 3-D
spatiotemporal domain. Events are generated by
changes in the image, which are typically due to
motion, either of the camera or the scene. As a
result, different motions result in a different set of
events. For learning based tasks based on a static
scene such as classification which directly use the
events, we must either rely on the learning method
to learn the underlying object distinct from the mo-
tion, or to memorize all possible motions for each
object with extensive data augmentation. Instead,
we propose a novel transformation of the input
event data which normalizes the 2 and y positions
by the timestamp of each event. We show that this
transformation generates a representation of the
events that is equivariant to this motion when the
optical flow is constant, allowing a deep neural
network to learn the classification task without the
need for expensive data augmentation. We test
our method on the event based N-MNIST dataset,
as well as a novel dataset N-MOVING-MNIST,

with significantly more variety in motion com-
narad ta tha ctandard NLMNITQT Adatacat Tn all

Figure 1. Classical convolution layers would not be equivariant to
event motions on the left, since they are shear deformations of the
event volume. After transforming to canonical coordinates on the
right, the volume translates uniformly, resulting in equivariance
to the motion. Left: Raw input events. Right: Corresponding
transformed events.

latency, high dynamic range, and low power consumption.
These benefits provide a compelling reason to utilize these
cameras in traditional vision tasks such as image classifi-



The future is ours ... but, we need:
Allow to execute Learning and General Computation (equations)

Allow for incremental processing ensuring a fast access for each incoming event
to local resources

The retrieval of relevant local information around incoming events (access times)
to match the high temporal properties of event-based cameras and ensure
computation can be carried out at the native elementary temporal step of event-
based cameras (1us)

Allow for sparse memory use following the scene-driven properties of event-
based cameras and temporal requirements of the used incremental algorithms.

Meet the current urgent need to handle >5 Giga Events/second at few mW




