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Focus of our research in Graz: 

Getting attractive AI-performance into                               

spike-based neuromorphic hardware 

Options for that: 

1.  Train an ANN, and use its weights for an SNN on the chip 

 

2.  Train an SNN off-chip, and use its weights on the chip 

 

3. Train spiking DNNs on the chip. 

 

I will present biologically inspired methods for each of these three 

options.  

 

We propose that this as a generally fruitful research strategy for 

neuromorphic hardware (NMH): 

Combine the best of two worlds:  ML/AI and brain science. 



1.  Train an ANN, and use its weights for the SNN on the chip 

 

Question: If one needs to use offline training,  why should one first train an ANN 
offline, rather than training an SNN offline? 

 

Answer:  E.g. for image classification the industrial standard dataset ImageNet is 
so large (1.2 million training examples)  and the best performing ANNs are so large 
(250 million neurons) that this training process can only be carried out by a few 
companies (such as Google or Facebook)  which have the computing resources for 
that. 

 

Fortunately, Google has made the weights of the best performing trained ANNs for 
ImageNet (EfficientNet) public.  Hence we can use them also in SNNs. But the 
question is how? 

 

Obstacles for common ANN2SNN conversion methods: 

 

1. With a rate-coding conversion  one cannot expect an                                    
energy advantage NMH. 

 

2. The best performing ANNs  (EfficientNet) use the SiLU                               
activation function, which poses additional obstacles for  

      rate coding, since it outputs both positive and negative  

      values. 

 



Methods for ANN-to-SNN conversions 

 

Our new method: 

• Few spike (FS) coding. 

 

 

 

Inspiration from biology: 

Many neurons in the brain encode the  

amplitude of an input current by a  

spike-pattern with few spikes 

 

Inspiration from mathematics: 

Binary coding 

Source: Allen Cell Types Database 

(Layer 3 spiny neuron from the human 

middle temporal gyrus). 



FS-coding requires a special type of spiking neuron:  

a FS-neuron 

  

● To induce  encoding of analog values x with few spikes within a short time 

window of K time steps (e.g., K = 16), we endow the FS-neuron with an 

internal dynamics during these K time steps (biological neurons actually also 

have such internal dynamics on a slower time scale). 

 

● This internal dynamics is determined by parameters T(t), h(t), d(t) for  t = 1, ..., K 

 

● These parameters are optimized to emulate specific ANN-neurons. 

 

 



Example: Internal parameters of a FS-neuron that is 

optimized to emulate an ANN neuron with the SiLU 

activation function from EfficientNet 

The FS-neuron that resulted from the 

parameter optimization uses the 

fewest spikes for the most frequently 

occurring values of x:  



SNN performance on ImageNet that  

results from this new ANN2SNN conversion 

Previous SNN record for ImageNet: 74.6% (Rueckauer et al., 2017) 

baseball seal 

stork 

ImageNet dataset: 

○ 1,281,167 training images  

○ 50,000 test images 

○ 1000 categories 

■ among them for example 59 types of birds  



Summary of section 1 of my talk  

 
• FS conversion enables by far the best performance of SNNs on ImageNet. 

 

 

• Since each layer of the SNN spends after FS-conversion just  K (e.g., K = 16) 
time steps, the network can start to classify a new image every 2K time steps. 
Hence the resulting throughput is substantially higher than for rate-based 
ANN2SNN conversion. 

 

• Discussions with several NMH designers lead to the conclusion that FS-neurons 
can be implemented at moderate cost in NMH. They will compete with new 
efforts to implement ANN neurons with ReLU activation functions  directly in 
digital „NMH“. Not clear whether one can also implement the SiLU activation 
function efficiently directly in NMH.  

 

• The option to encode information in spike patterns with few                                 
spikes seems to be under-researched (but used by nature) 

 

• The paper on our approach appeared last week in print: 

 

Christoph Stöckl, Wolfgang Maass. (2021). Optimized spiking                                 
neurons can classify images with high accuracy through                                          
temporal coding with two spikes. Nature Machine Intelligence. 

 

 

 



2.  Train an SNN off-chip for on-chip inference 

 

• Results in this direction were so far not encouraging for DNNs. 

  

• But actually, one had focused on just one type of DNN:  CNNs,    where the 

problem is to get into a regime where the SNN achieves high accuracy with 

energy-efficient  low firing rates. 

 

Question: What is the situation for other DNNs that are important for AI? 

 

I will focus here on Relational Networks (RelNets)., which have been developed 

in AI for reasoning about relations between items in a story, an image, a video, but 

can also be used for online reasoning about relations between items in 

simultaneously presented videos and stories. 

 

 

For implementing RelNets in SNNs, we first have to emulate LSTM units in 

neuromorphic hardware (for encoding sentences).  



One can emulate LSTM units on Loihi via AHP-currents 

It had already been shown in (Bellec et al., 
2018) that LSTM units can be emulated by 
spiking neurons with spike frequency 
adaptation. 

 

 

Spike-frequency adaptation can be 
implemented efficiently on Loihi in the same 
way as in the brain: 

Via spike-triggered    

After-Hyper-Polarization (AHP) currents: 

 

z[t] = 1 if the neuron fires at time t, 

z[t] = 0 otherwise  



First performance test:  

Time series classification (sequential MNIST) on Loihi 

We achieved via spiking neurons with AHP currents on Loihi almost the  

same classification accuracy as LSTM networks, but with an  

Energy-Delay-Product that was by several orders of magnitude smaller.  



Back to RelNets,  

and the implementation challenge for large DNNs on Loihi 

 

We developed a spike-based variation of the ANN-RelNet of   

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu, R., Battaglia, P., & 
Lillicrap, T. (2017). A simple neural network module for relational reasoning. arXiv preprint 
arXiv:1706.01427. 

 

They had tested their RelNet on answering questions about 

   

• relations between visual objects in an image (CLEVR dataset), and  

 

• relations between objects, persons, and actions in stories, given as 
sequences of sentences in natural language  (bAbI tasks). 

 

 

We focused on the application to natural language, since that requires no CNN 
for preprocessing. 



Examples for 6 bAbI tasks (Weston et al., 2016) 

• b 

A task is considered solved if there are at most 5% errors on new test stories from the task. 



Structure of the spike-based RelNet 

Example: 

Application of the spiking RelNet to  

a Basic Deduction task: 



Relational Reasoning  

on Loihi 

• More than 95% of RelNet consists of feedforward modules 

 

• Hence we needed to make activity in the feedforward modules extremely sparse in 
order to be energy-efficient 

 

• Note that the size of module C grows quadratically with the number of sentences in a 
story. This allowed us to measure energy consumption for several effective RelNet sizes 

 

• An important step for enforcing event based computing was to insist that the SNN 
output is given at a single time step: 



Bringing the spiking RelNet into an event based 

activity regime 

• In fact, the activity became sparser for 
larger  RelNets (their size grows roughly 
quadratically with the number of 
sentences in the story); 

 

• Likely explanation: the number of 
„interesting relations“ that the network 
extracts does not grow equally fast  

 

• We introduced in addition a generally 
useful tool for sparsening firing activity in 
gradient descent training:  

      Membrane voltage regularization 

 

• It allows us to use strong spike-rate 
regularization without locking neurons 
into an ineffective strongly hyperpolarized 
state: 

 

 

 

 

 



Implementation on 22 Loihi chips 

A few tricks (and many 
additional cores) were 
needed to overcome 
constraints on fan-out 
and number of 
synapses of a core. 

 

 

 

 

 

 

Additional relay cores 
(green) turned out to 
be useful for reducing 
inter-chip 
communication. 

 



Energy consumption of ANN RelNets on GPUs relative 

to spiking RelNets on Loihi 

All ratios shown against Loihi (=1). 

 

RelNet can solve 17 of the 20 
bAbI tasks. In addition Task 19 
was excluded because it takes 
too much computation time on 
Loihi. 

 

 

Results:   

• Loihi needs for relational reasoning 4-12 time less energy than a GPU 

 

• Loihi is somewhat slower than the GPU (apparently due to interchip 

communication and the larger number  of computation steps needed on Loihi)  

 

• Nevertheless, Loihi had for all problem sizes a lower EDP (6 times lower in the 

most frequently occurring range of stories with up to 6 sentences) 



Summary of section 2 of my talk  

 
• LSTM units can be efficiently emulated on Loihi with AHP-currents 

 

• This makes emulations of LSTM networks on Loihi substantially more 

energy efficient than LSTM networks on GPUs 

 

• RelNets use LSTM units in a small submodule, but still can be implemented 

more energy efficiently on Loihi  

 

• One reason for that is intrinsic to this type of AI task: salient               

relations between items tend to be grow slowly with problem size 

      (use attention for vision tasks?)                                  

 

• Paper in preparation: 

 

Arjun Rao, Philipp  Plank, Andreas Wild,  

Wolfgang Maass. A long short-term  

memory for implementing AI in  

neuromorphic hardware 

 

 

 

Arjun Rao 
Philipp  

Plank 

Andreas  

Wild 



3. Train spiking DNNs on the chip 

 

• E-prop can be implemented on SpiNNaker and Loihi2 for on-chip 

learning  

 

• But software simulations suggest that e-prop learns slower than 

BPTT 

 

• Hence we need variations of e-prop that enable fast learning. 



One slide on e-prop   („eligibility trace forward propagation“)  

Combines insight from neuroscience  and theory: 

• From neuroscience:  Role of local eligibility traces and top down learning signals 

(third factors) 

                                                                                                       

• From theory: Gradient descent for the network loss E can be written rigorously in the 

form: 

 

 

 

 

 

 

This suggests the following online learning rule for the synapse from neuron i to j:  

 

                                     modify   𝑾𝒋𝒊     𝐚𝐭 time  t  by      - 𝑳𝒋
𝒕 ∙ 𝒆𝒋𝒊

𝒕     

 

learning 

signal 
eligibility 

trace 



Ideal learning signals 𝑳𝒋
𝒕 usually require knowledge of the 

future, and need to be replaced for online learning               

by online approximations 

 The ideal learning signal  𝐿𝑗
𝑡  for neuron j at time t 

would be  
𝒅𝑬

𝒅𝒛𝒋
𝒕 , which also depends on losses after 

time t . 

 

 

 

 

 

Simple online approximations of  this ideal learning 

signals were explored in 

 

G. Bellec, F. Scherr, A. Subramoney, E. Hajek, 

D. Salaj, R. Legenstein, and W. Maass.  A 

solution to the  learning dilemma for recurrent 

networks of spiking neurons. Nature 

Communications, 2020. 

 

https://igi-web.tugraz.at/people/Abstracts/BellecETAL:19b
https://igi-web.tugraz.at/people/Abstracts/BellecETAL:19b
https://igi-web.tugraz.at/people/Abstracts/BellecETAL:19b


Biological inspiration: 

Learning signals are generated in the brain by  

specialized brain structures, such as VTA 

Hypothesis: The production of learning signals 

(such as DA) in the brain has been optimized 

by evolution in special brain structures, such as 

VTA, to support fast learning of tasks that are 

important for survival.  

 

So lets do the same with our SNNs! 

 

Rather than approximating ideal learning 

signals based on gradients, focus on  

generating learning signal that enable 

directly fast learning for more limited 

ranges F  of learning tasks. 

 

 

 



Example: Define the target range F  of learning tasks  

as capability to reproduce any given arm movement 

Movement 

demonstration in 

cartesian 

coordinates 

Single weight 

update using 

learning signals 

provided by the 

error-module 

Movement 

replicated using 

the two-joint arm 



Result: 

One-shot learning of  

new arm movements 
 

Arm movements 

 

 

Firing activity in the RSNN 

 

 

and in the error module (= another 
RSNN) 

 

The learning signals that are 
emitted by the optimized error 
module (und used here by e-prop 
for one-shot learning) 

 

are very different from the 

learning signals 
𝒅𝑬

𝒅𝒛𝒋
𝒕  that BPTT 

proposes 

 

first trial              second trial 



Summary of part 3 

• By optimizing the generation of learning signals via a special SNN 

(that can easily be implemented in NMH) one can substantially 

speed up on-chip learning via e-prop for specific families of 

learning tasks. 

 

• Other applications that we explored: One-shot learning of new 

(Omniglot) symbols, and of new spoken words  

 

First draft of a paper: 

 

F. Scherr, C. Stoeckl, and W. Maass.  

One-shot learning with spiking  

neural networks. bioRxiv, 2020. 

https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20
https://igi-web.tugraz.at/people/Abstracts/ScheerETAL:20


Summary of my talk  

• I have demonstrated three biologically inspired methods for enhancing the 
performance and energy efficiency of spike-based AI tools  

 

• We have shown that one can achieve in this way a classification 
performance of SNNs on ImageNet that is very close to the best CNN 
performance (using on average less than 2 spikes per neuron) 

 

• We have also shown that in contrast to CNNs, large Relnets can be 
implemented efficiently in NMH 

 

• Finally, fast and efficient variants of e-prop are on the way, enabling in some 
cases even one-shot learning by SNNs 

 

• I view these as examples of a generally fruitful research strategy for NMH: 
To integrate the best of two worlds: ML/AI and brain science. 

 


