MAKING SPIKING NEURONS MORE SUCCINCT WITH MULTI-COMPARTMENT MODELS

NICE workshop, 18.3.2021

UNIVERSITÄT

OSNABRÜCK

Introductions

- → Osnabrück University (UOS)
 - \rightarrow Chair for Neuroinformatics (NI)
 - Prof. Gordon Pipa
 - Pascal Nieters
 - Johannes Leugering
- → Fraunhofer Society (FhG)
 - → Institute for Integrated Circuits (IIS)
 - \rightarrow Communication Systems Division (KS)
 - → Broadband and Broadcast Department (BB)
 - → Embedded AI Group (eAl)
 - Johannes Leugering

Active dendritic processes (plateau potentials)

© Fraunhofer

3

Active dendritic processes (plateau potentials) localized depolarization

> **Fraunhofer OSNABRÜCK** UNIVERSITÄT

public

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)

IIS

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")

IIS

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)

IIS

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- **Biological mechanism (simplified):**

IIS

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- **Biological mechanism (simplified):**
 - 1. spikes release neurotransmitter

IIS

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- **Biological mechanism (simplified):**
 - 1. spikes release neurotransmitter
 - 2. depolarize dendrite (AMPAr)

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- **Biological mechanism (simplified):**
 - 1. spikes release neurotransmitter
 - 2. depolarize dendrite (AMPAr)
 - 3. localized coincidence detection

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- **Biological mechanism (simplified):**
 - 1. spikes release neurotransmitter
 - depolarize dendrite (AMPAr) 2.
 - localized coincidence detection 3.
 - 4. triggers plateau (NMDAr)

13

- Active dendritic processes (plateau potentials)
 - localized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- **Biological mechanism (simplified):**
 - 1. spikes release neurotransmitter
 - 2. depolarize dendrite (AMPAr)
 - 3. localized coincidence detection
 - 4. triggers plateau (NMDAr)
 - 5. self-sustained activation (VGCC)

14

💹 Fraunhofer

- Active dendritic processes (plateau potentials)
 - Iocalized depolarization
 - last long (>100ms)
 - increase probability to fire ("UP-state")
 - are ubiquitious & critical for learning
 - strangely absent from most neuron models (notable exceptions: Hawkins, Senn, Heusser)
- Biological mechanism (simplified):
 - 1. spikes release neurotransmitter
 - 2. depolarize dendrite (AMPAr)
 - 3. localized coincidence detection
 - 4. triggers plateau (NMDAr)
 - 5. self-sustained activation (VGCC)
 - 6. Diffusion of depolarization along dendrite

15

💹 Fraunhofer

• A **neuron** is a tree of dendrite **segments**

lis

- A neuron is a tree of dendrite segments
- Segments can fire local plateau potentials that
 - are **binary**
 - last for long period (~100ms)
 - can be extended (~retriggerable monoflop)
 - depolarize ("enable") downstream neighbour

- A **neuron** is a tree of dendrite **segments**
- Segments can fire local plateau potentials that
 - are binary
 - last for long period (~100ms)
 - can be extended (~retriggerable monoflop)
 - depolarize ("enable") downstream neighbour
- Each segment (and the soma) fires if and only if:
 - receives volley of coincident (~5ms) spikes
 - and depolarized by upstream neigbour(s) (or if it is apical dendrite)

- A **neuron** is a tree of dendrite **segments**
- Segments can fire local **plateau potentials** that
 - are **binary**
 - last for long period (~100ms)
 - can be extended (~retriggerable monoflop)
 - depolarize ("enable") downstream neighbour
- Each segment (and the soma) fires if and only if:
 - receives volley of coincident (~5ms) spikes
 - and **depolarized** by upstream neigbour(s) (or if it is apical dendrite)
- Synapses have a weight & transmission prob.

Dendritic plateaus provide memory traces

Point-neuron

Neuron with active dendrite segment

20

OSNABRÜCK

UNIVERSITÄT

Dendritic plateaus provide memory traces

50ms

t1

100ms

t_o+τ

150ms

Point-neuron

 \rightarrow sensitive to **temporal**

 \rightarrow invariant to smallscale timing jitter

 \rightarrow combines **fast ESPS** timescale with slow plateau timescale

21

0ms

t₀

Different topologies detect different patterns

public

Different topologies detect different patterns

Different topologies detect different patterns

→each individual neuron is **deterministic**

UNIVERSITÄT

26

IIS

OSNABRÜCK

 \rightarrow each individual neuron is **deterministic**

→ but: **stochastic input** results in stochastic output

 \rightarrow each individual neuron is **deterministic**

- → but: **stochastic input** results in stochastic output
- \rightarrow the **probability** is graded!

28

- \rightarrow each individual neuron is **deterministic**
 - → but: **stochastic input** results in stochastic output
 - \rightarrow the **probability** is graded!
 - could be put into ensembles \rightarrow

→each individual neuron is **deterministic**

- → but: stochastic input results in stochastic output
- \rightarrow the **probability** is graded!
- \rightarrow could be put into **ensembles**

→firing **probability** ~ certainty of stimulus

UNIVERSITÄT

30

OSNABRÜCK

- → but: **stochastic input** results in stochastic output
- \rightarrow the **probability** is graded!
- could be put into **ensembles** \rightarrow

 \rightarrow firing **probability** ~ certainty of stimulus

 \rightarrow the neuron becomes a **probabilistic**, event-based pattern detector

Making sense of it all: A toy example

- Two-dimensional data
- Select class 1, ignore class 2

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a **volley** of coincident spikes, i.e.: $(x,y) \rightarrow (\#x \text{ spikes}, \#y \text{ spikes})$

IIS

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a **volley** of coincident spikes, i.e.: $(x,y) \rightarrow (\#x \text{ spikes}, \#y \text{ spikes})$

Linear classifier (point neuron):

- Optimal split (e.g. info-gain)
- Problem: combining neurons

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a **volley** of coincident spikes, i.e.: $(x,y) \rightarrow (\#x \text{ spikes}, \#y \text{ spikes})$

Linear classifier (point neuron):

- Optimal split (e.g. info-gain)
- Problem: combining neurons

Multi-compartment neuron:

IIS

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a volley of coincident spikes, i.e.: $(x,y) \rightarrow (#x \text{ spikes, } #y \text{ spikes})$

Linear classifier (point neuron):

- Optimal split (e.g. info-gain)
- Problem: combining neurons

Multi-compartment neuron:

Iterative application (~Tree!)

37

🗾 Fraunhofer

Example: What the second segment can see & do

A toy-example:

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a **volley** of coincident spikes, i.e.: $(x,y) \rightarrow (\#x \text{ spikes}, \#y \text{ spikes})$

Linear classifier (point neuron):

- Optimal split (e.g. info-gain)
- Problem: combining neurons

Multi-compartment neuron:

Iterative application (~Tree!)

IIS

Example: What the third segment can see & do 10 -9-8 \geq X-#spikes from population 7-6 5-X-4-3-2Х-1-0-0 10 8 9

#spikes from population X

A toy-example:

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a volley of coincident spikes, i.e.: (x,y) → (#x spikes, #y spikes)

Linear classifier (point neuron):

- Optimal split (e.g. info-gain)
- Problem: combining neurons

Multi-compartment neuron:

Iterative application (~Tree!)

- Two-dimensional data
- Select class 1, ignore class 2

Encoding:

- Encode X, Y each by one population of 10 neurons
- Each sample becomes a **volley** of coincident spikes, i.e.: $(x,y) \rightarrow (\#x \text{ spikes}, \#y \text{ spikes})$

Linear classifier (point neuron):

- Optimal split (e.g. info-gain)
- Problem: combining neurons

Multi-compartment neuron:

- **Iterative** application (~Tree!)
- Finds NICE **sparse** solution!

40

active dendrites are an established fact in neuroscience, but mostly absent in machine learning models

- active dendrites are an established fact in neuroscience, but mostly absent in machine learning models
- active dendrites could realize interesting computations
 - temporal pattern detection
 - timing invariance
 - Ionger memory traces (>100ms)
 - nonlinear computation within each neuron

42

- active dendrites are an established fact in neuroscience, but mostly absent in machine learning models
- active dendrites could realize interesting computations
 - temporal pattern detection
 - timing invariance
 - longer memory traces (>100ms)
 - nonlinear computation within each neuron
- stochasticity & delay have a purpose in this framework

- active dendrites are an established fact in neuroscience, but mostly absent in machine learning models
- active dendrites could realize interesting computations
 - temporal pattern detection
 - timing invariance
 - Ionger memory traces (>100ms)
 - nonlinear computation within each neuron
- **stochasticity** & **delay** have a purpose in this framework
- Entire model only makes use of **binary** states

OSNABRÜCK

UNIVERSITÄT

- active dendrites are an established fact in neuroscience, but mostly absent in machine learning models
- active dendrites could realize interesting computations
 - temporal pattern detection
 - timing invariance
 - Ionger memory traces (>100ms)
 - nonlinear computation within each neuron
- **stochasticity** & **delay** have a purpose in this framework
- Entire model only makes use of **binary** states
- → Attractive for neuromorphic hardware community?

Further information & contacts

"Event-based pattern detection in active dendrites" Preprint: <u>https://www.biorxiv.org/content/10.1101/690792v3</u> Λ Work in progress – revision upcoming Λ

"Making spiking neurons more succinct with multi-compartment models" https://dl.acm.org/doi/epdf/10.1145/3381755.3381763

Osnabrück University:

Pascal Nieters pnieters@uni-osnabrueck.de

Fraunhofer IIS:

Gunter Föttinger (Head of Embedded AI, IIS) gunter.foettinger@iis.fraunhofer.de Alexander Jaschke (BizDev for Com. Systms., IIS) alexander.jaschke@iis.fraunhofer.de

Prof. Gordon Pipa gpipa@uni-osnabrueck.de

Johannes Leugering (Expert in Embedded AI, IIS) johannes.leugering@iis.fraunhofer.de

Dr. Marco Breiling (Chief Scientist for Com. Systms., IIS) marco.breiling@iis.fraunhofer.de

