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 Active dendritic processes (plateau potentials)

 localized depolarization

 last long (>100ms)

 increase probability to fire („UP-state“)

 are ubiquitious & critical for learning

 strangely absent from most neuron models
(notable exceptions: Hawkins, Senn, Heusser)

 Biological mechanism (simplified):

1. spikes release neurotransmitter

2. depolarize dendrite (AMPAr)

3. localized coincidence detection

4. triggers plateau (NMDAr)

5. self-sustained activation (VGCC)

6. Diffusion of depolarization along dendrite
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 A neuron is a tree of dendrite segments

 Segments can fire local plateau potentials that 

 are binary

 last for long period (~100ms)

 can be extended (~retriggerable monoflop)

 depolarize („enable“) downstream neighbour

 Each segment (and the soma) fires if and only if:

 receives volley of coincident (~5ms) spikes

 and depolarized by upstream neigbour(s)
(or if it is apical dendrite)

 Synapses have a weight & transmission prob.
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sensitive to temporal 
order!

invariant to small-
scale timing jitter

combines fast ESPS 
timescale with slow 
plateau timescale
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segments compose like gates

topology determines pattern

can provide longer memory

24



© Fraunhofer 

public

Probabilistic synapses allow graded responses

25



© Fraunhofer 

public

each individual neuron is deterministic

Probabilistic synapses allow graded responses

26



© Fraunhofer 

public

each individual neuron is deterministic

 but: stochastic input results in 
stochastic output

Probabilistic synapses allow graded responses

27



© Fraunhofer 

public

each individual neuron is deterministic

 but: stochastic input results in 
stochastic output

 the probability is graded!

Probabilistic synapses allow graded responses

28



© Fraunhofer 

public

each individual neuron is deterministic

 but: stochastic input results in 
stochastic output

 the probability is graded!

 could be put into ensembles

Probabilistic synapses allow graded responses

29



© Fraunhofer 

public

each individual neuron is deterministic

 but: stochastic input results in 
stochastic output

 the probability is graded!

 could be put into ensembles

firing probability ~ certainty of stimulus

Probabilistic synapses allow graded responses

30



© Fraunhofer 

public

each individual neuron is deterministic

 but: stochastic input results in 
stochastic output

 the probability is graded!

 could be put into ensembles

firing probability ~ certainty of stimulus

the neuron becomes a probabilistic, 
event-based pattern detector

Probabilistic synapses allow graded responses
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A toy-example:

 Two-dimensional data

 Select class 1, ignore class 2

Encoding:

 Encode X, Y each by one
population of 10 neurons

 Each sample becomes a volley 
of coincident spikes, i.e.:
(x,y)  (#x spikes, #y spikes)

Linear classifier (point neuron):

 Optimal split (e.g. info-gain)

 Problem: combining neurons

Multi-compartment neuron:

 Iterative application (~Tree!)

 Finds NICE sparse solution!
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but mostly absent in machine learning models

 active dendrites could realize interesting computations

 temporal pattern detection

 timing invariance

 longer memory traces (>100ms)

 nonlinear computation within each neuron

 stochasticity & delay have a purpose in this framework

 Entire model only makes use of binary states 

 Attractive for neuromorphic hardware community?
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Fraunhofer IIS:

Johannes Leugering (Expert in Embedded AI, IIS)

johannes.leugering@iis.fraunhofer.de

Dr. Marco Breiling (Chief Scientist for Com. Systms., IIS)

marco.breiling@iis.fraunhofer.de

Gunter Föttinger (Head of Embedded AI, IIS)

gunter.foettinger@iis.fraunhofer.de

Alexander Jaschke (BizDev for Com. Systms., IIS)

alexander.jaschke@iis.fraunhofer.de

Pascal Nieters

pnieters@uni-osnabrueck.de

Prof. Gordon Pipa

gpipa@uni-osnabrueck.de

Osnabrück University:

“Event-based pattern detection in active dendrites”

Preprint: https://www.biorxiv.org/content/10.1101/690792v3

⚠Work in progress – revision upcoming ⚠

“Making spiking neurons more succinct with multi-compartment models”
https://dl.acm.org/doi/epdf/10.1145/3381755.3381763
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