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Preliminary Results: MNIST

● Training – 96%, Validation – 92%

● 14 Loihi timesteps per training sample 
● Inference after 3 timesteps

● 1000 FPS, 1 ms/sample
● 0.3 mJ/sample
● Energy-delay product = 0.3μJs
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MNIST 
10x10

Dense 
300

Dense
10

● 3 layer network (300 hidden units)
● Binary and downsampled by 2



Spiking Backprop

Sornborger, Andrew, Louis Tao, Jordan Snyder, and Anatoly Zlotnik. "A Pulse-
gated, Neural Implementation of the Backpropagation Algorithm." In Proceedings
of the 7th Annual Neuro-inspired Computational Elements Workshop, pp. 1-9.
2019.

Neural and network mechanisms for implementing backprop:
Synfire-gated synfire chain(s)
Short-term memories
Push-me pull-you pairs for encoding real numbers
Gating of ReLU thresholded activity
Gating of derivative of ReLU (theta function) activity via SGSC
Implementation of Hadamard product via pulse-gating
Simultaneous gating of graded information to pre- and post-

synaptic neuronal populations for hebbian synaptic update (turning 
learning on and off via pulse-gated control)

Alpha Renner, Forrest Sheldon, Louis Tao, Anatoly Zlotnik, Andrew Sornborger.
"A Pulse-gated, Spiking Neural Implementation of the Backpropagation
Algorithm." to appear In Proceedings of the 78h Annual Neuro-inspired
Computational Elements Workshop, pp. 1-9. 2020.



Backpropagation Algorithm
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Note:

This is just a simplified 
visualization, the actual 𝛿w is:
𝛿w ∝ 𝛿 ∙ x ∙ r’(o) 



The learning mechanism in detail
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Multilayer Backpropagation Algorithm
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Spiking Backprop

Alpha Renner, Forrest Sheldon, Louis Tao, Anatoly Zlotnik, Andrew Sornborger.
"A Pulse-gated, Spiking Neural Implementation of the Backpropagation
Algorithm." In Proceedings of the 78th Annual Neuro-inspired Computational
Elements Workshop, pp. 1-9. 2020.



Spiking Backprop - XOR

Alpha Renner, Forrest Sheldon, Louis Tao, Anatoly Zlotnik, Andrew Sornborger.
"A Pulse-gated, Spiking Neural Implementation of the Backpropagation
Algorithm." to appear In Proceedings of the 78th Annual Neuro-inspired
Computational Elements Workshop, pp. 1-9. 2020.
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Conclusion

● Proof of principle of pulse-gated, spiking Backpropagation algorithm
● We use

○ Synfire-gated synfire chains to precisely route and remember values
○ Hebbian learning in 2 phases (depression and potentiation) to update 

weights (solution for the 3-factor dilemma of other approaches)
○ Binary coding (saves time, neurons and spikes) or population rate coding to 

encode values and enable a ReLU-like activation function
● MNIST: 1000 FPS, Energy-delay product – 0.3μJs
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Questions?


