

Inductive bias transfer between brains and machines

Fabian Sinz

Neural Intelligence Group, Uni Tübingen soon Uni Göttingen

@sinzlab

NICE 2021

Success of deep learning

https://paperswithcode.com/sota/image-classification-on-imagenet

Current state-of-the-art is brittle

"cat"

adversarial perturbation

"moped"

original

texturised images

2018. "Generalisation in Humans and Deep Neural Networks." Szegedy et al. 2013. "Intriguing Properties of Neural Networks." et al 2019. "Engineering a Less Artificial Intelligence." *Neuron*.

R

Differences in extrapolation between two algorithms given the **same** training data.

Inductive Bias is Essential for Generalization

Inductive Bias

R

Levels of Inductive Bias Transfer

How can we transfer good inductive biases?

Neural co-training on monkey V1

Shahd Safarani

Arne Nix

Konstantin Willeke

In collaboration with:

Andreas Tolias, PhD

Neural co-training hypothesis

Sinz et al 2019. "Engineering a Less Artificial Intelligence." Neuron.

Labels Epochs V1- Stan Inon V Gaussian Inon V Gaussian Inon V

Do we expect it to work?

Li et al. 2019. "Learning From Brains How to Regularize Machines." NeurIPS

Multi-Task-Learning with monkey V1

V1 co-training yields benefits

V1 co-training yields benefits

V1 co-training yields benefits

eberhard karls UNIVERSITAT TÜB<u>INGEN</u>

No all distortions show the same effect

Robustness correlates with "brain-likeness"

Summary

- Mammalian visual systems have a better inductive bias than deep networks
- Multi task learning can be one avenue to improve inductive biases of models
- Co-training on monkey V1 yields improves robustness classification models
- Brain-likeness correlates with robustness

Funding

CyberValley

Thanks for listening! Questions?

We are looking for PhD students!

Check out: <u>https://sinzlab.org/openpositions.html</u> or scan code

