

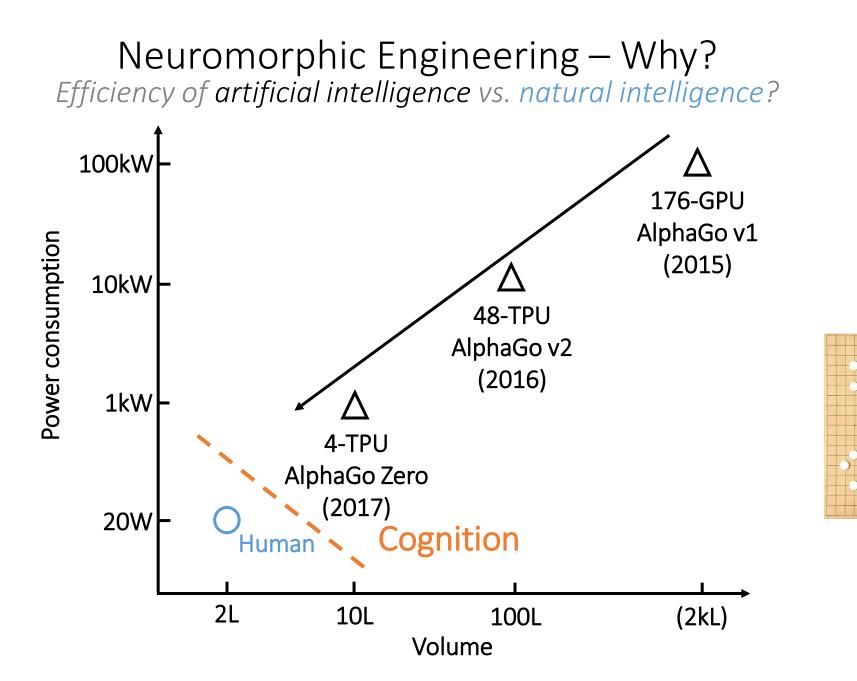
Bottom-Up and Top-Down Neuromorphic Processor Design:

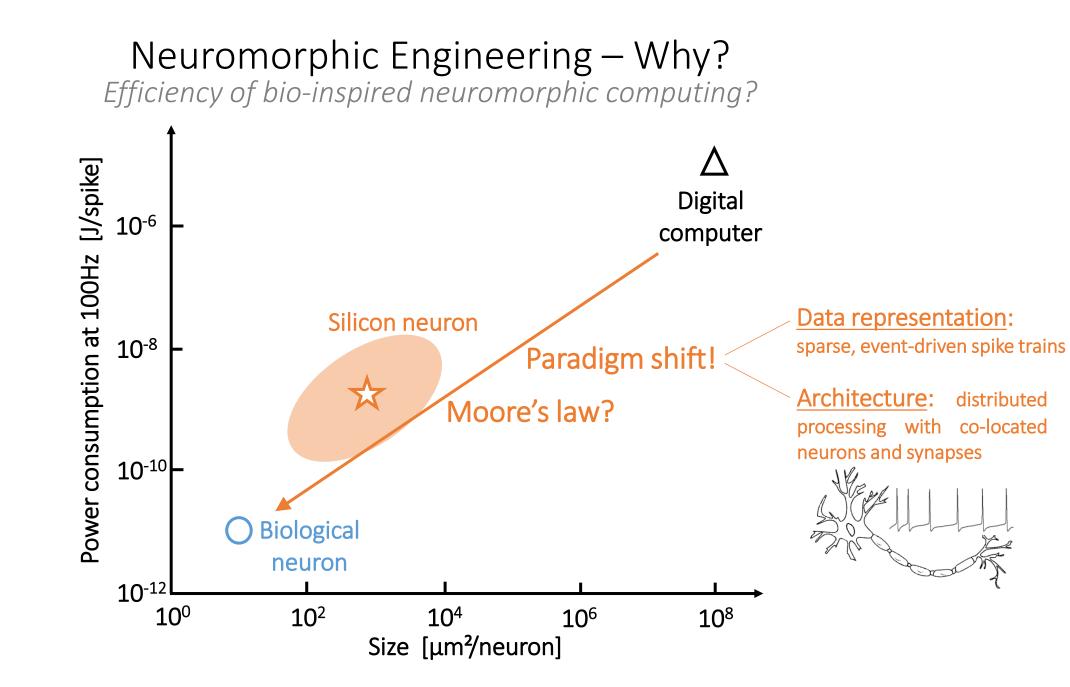
Unveiling Roads to Embedded Cognition

Charlotte Frenkel

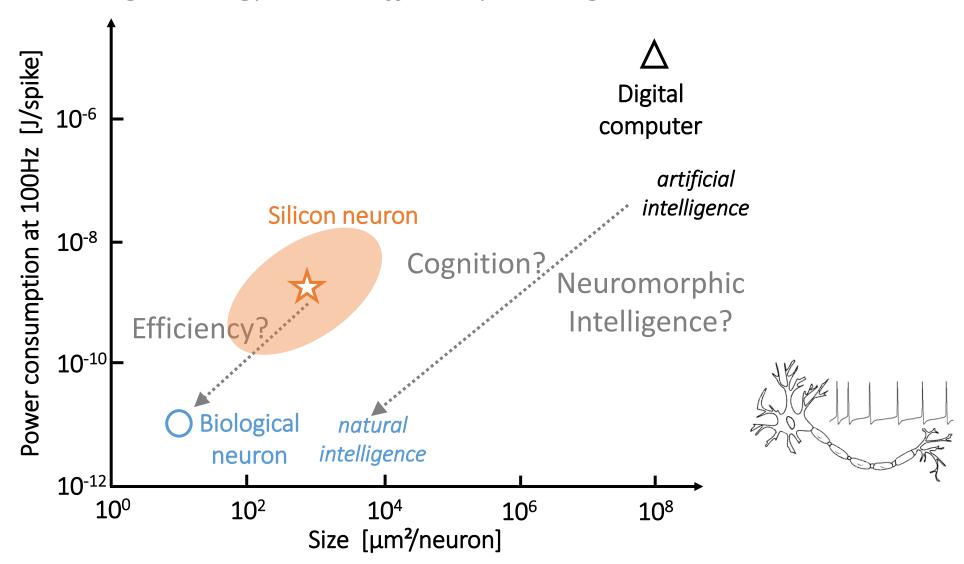
Institute of Neuroinformatics, UZH and ETH Zürich, Switzerland charlotte@ini.uzh.ch

Neuro-Inspired Computational Elements workshop Virtual, March 16-19, 2021



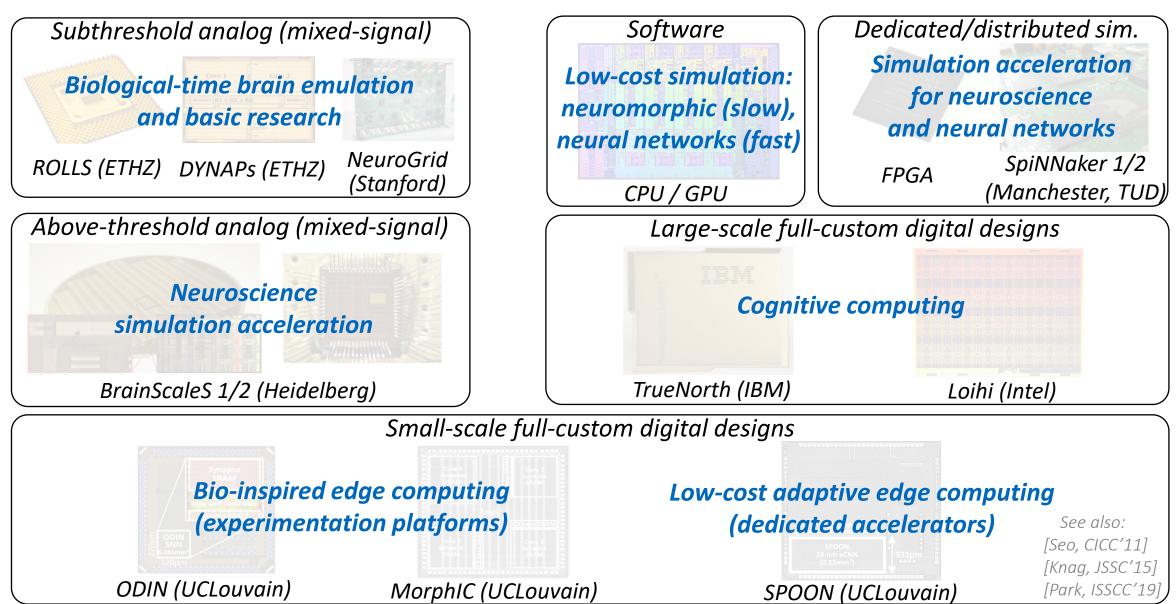


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

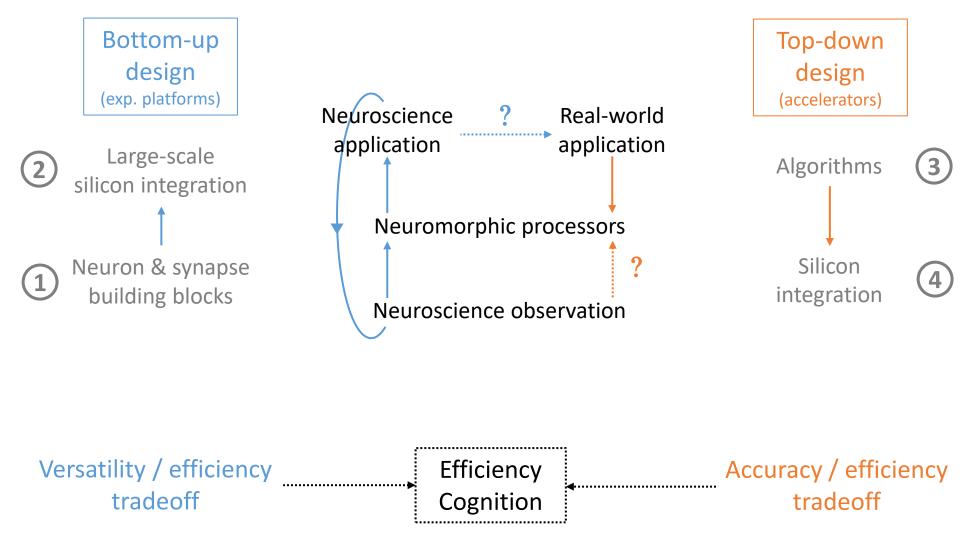

[Silver & Hassabis, https://deepmind.com/blog/article/alphago-zero-starting-scratch, 2017]

Frenkel, NICE'21 keynote

[Poon & Zhou, Front. Neurosci., 2011]


Neuromorphic Engineering – How? A design strategy toward efficiency and cognition?

[Poon & Zhou, Front. Neurosci., 2011]


Neuromorphic Engineering – How?

A design strategy toward efficiency and cognition?

Neuromorphic Engineering – How?

Unveiling roads to embedded cognition

Outline

Part I – Bottom-up neuromorphic design

- Building blocks
- Integration

Part II – Top-down neuromorphic design

- Algorithms
- Integration

Conclusion and perspectives

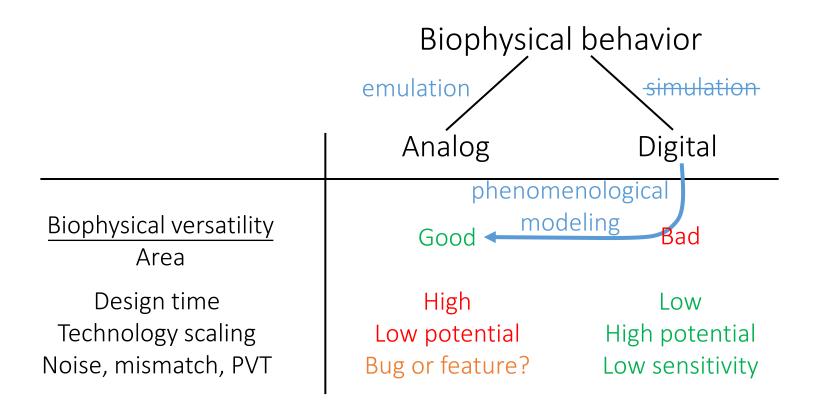
Outline

Part I – Bottom-up neuromorphic design

• Building blocks

Neurons and synapses as adaptive processing and memory elements[Frenkel, ISCAS, 2017]Integration[Frenkel, BioCAS, 2017]

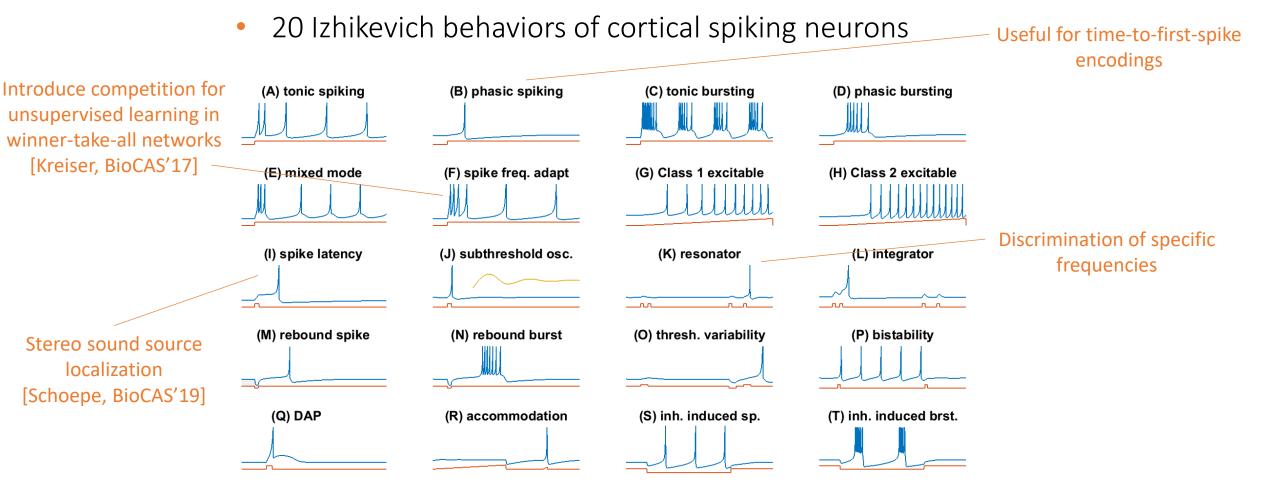
Part II – Top-down neuromorphic design


• Algorithms

• Integration

Conclusion and perspectives

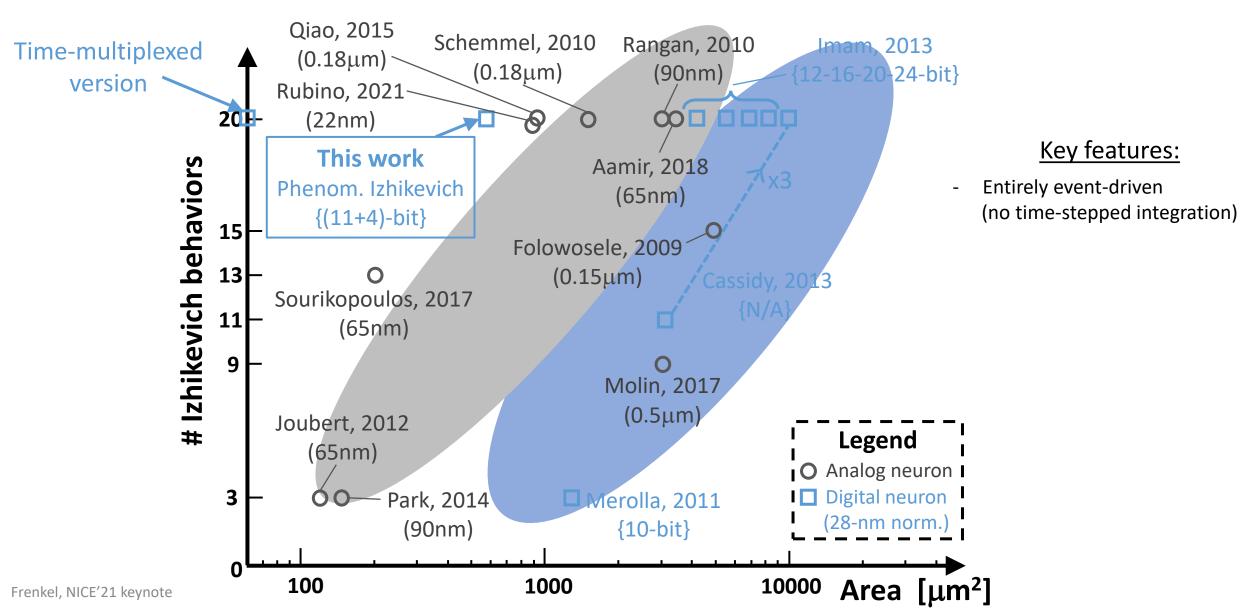
Design strategy Analog or digital?



How can we make the best of both worlds?

Design strategy

What should we aim for and phenomenologically implement?


Neurons

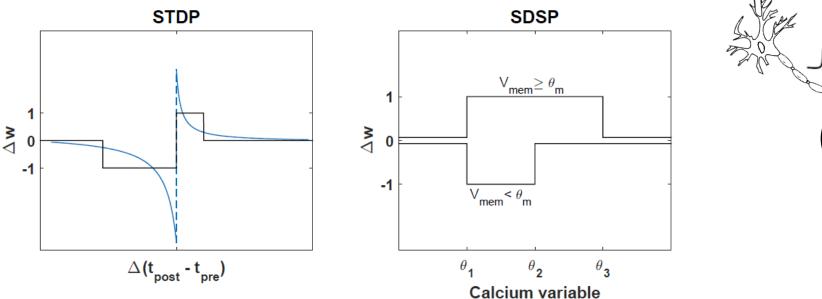
[Izhikevich, IEEE Trans. NN, 2004]

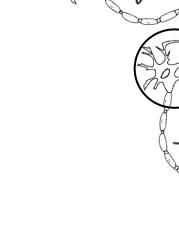
Proposed phenomenological digital neuron

Tackling the versatility/efficiency tradeoff

11

Design strategy

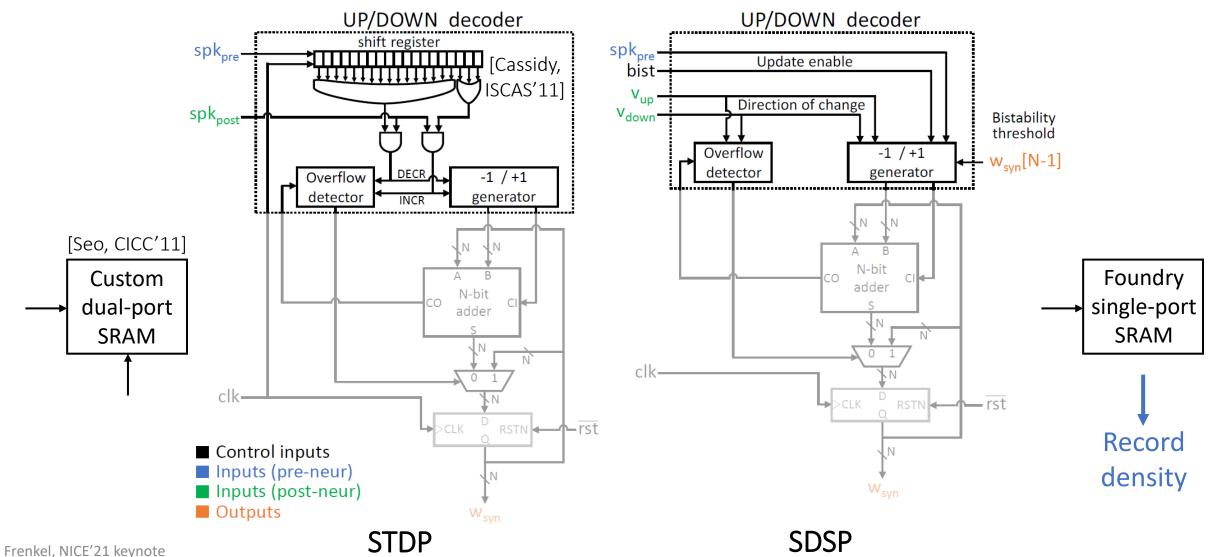

What should we aim for and phenomenologically implement?


Neurons

20 Izhikevich behaviors of cortical spiking neurons •

Synapses

Spike-based online learning



 \rightarrow perspectives

Proposed digital synapse

Tackling the versatility/efficiency tradeoff

Key challenge – Fan-in = 100-10000 synapses/neuron

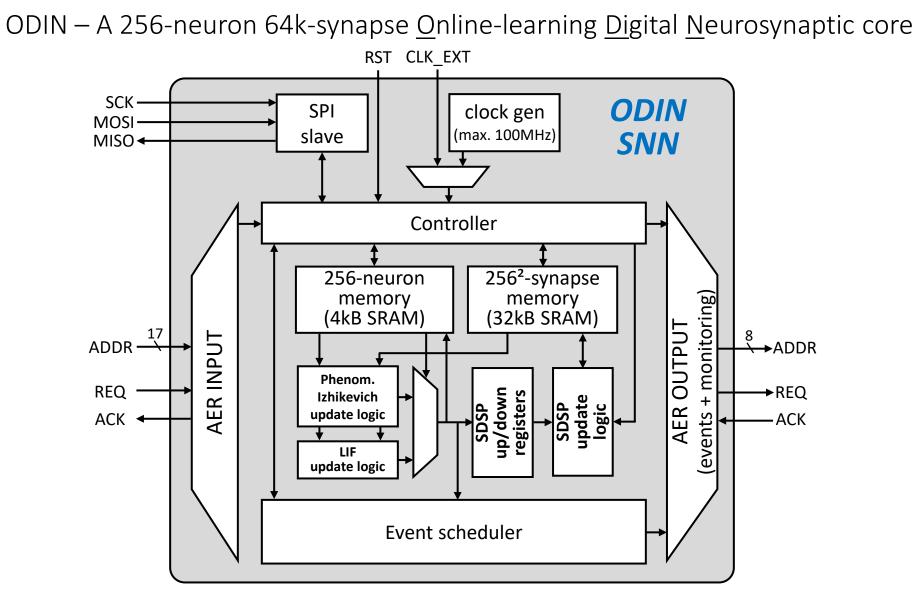
Outline

Part I – Bottom-up neuromorphic design

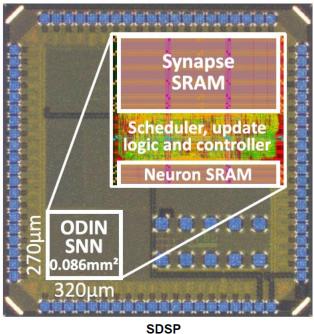
- Building blocks
- Integration

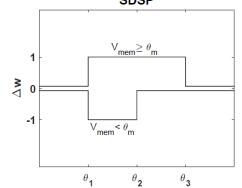
Proposed neuromorphic experimentation platforms

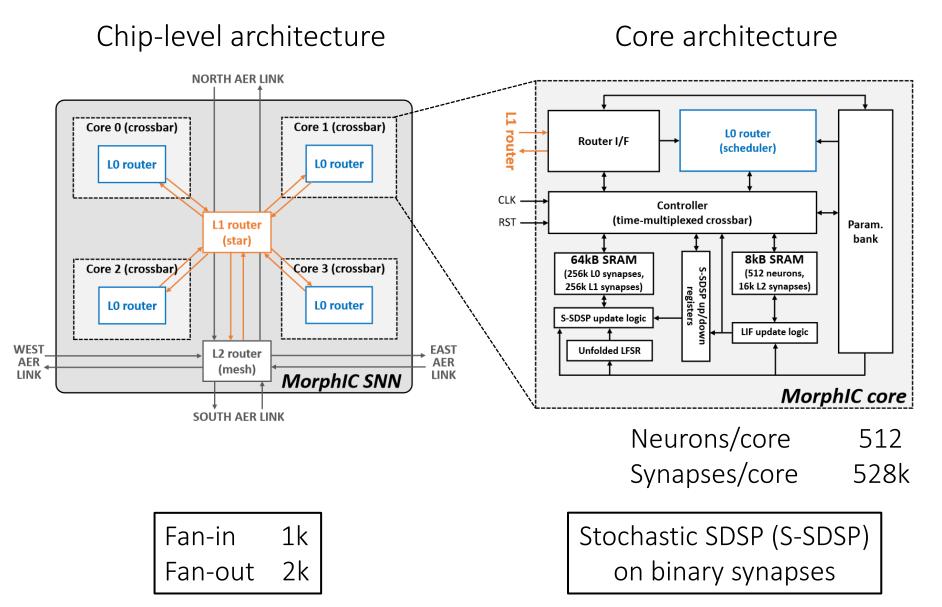
Part II – Top-down neuromorphic design


[Frenkel, *Trans. BioCAS*, 2019a] [Frenkel, *Trans. BioCAS*, 2019b]

- Algorithms
- Integration


Conclusion and perspectives


Architecture of ODIN


ODIN – Chip microphotograph and specifications

Technology	28nm FDSOI
Implementation	Digital
Area	0.086mm ²
# neurons	256
# synapses	64k
# Izhikevich behav.	20
Online learning	SDSP, (3+1)-bit weight
Time constant	Biological to accelerated
Supply voltage	0.55V - 1.0V
Leakage power (P _{leak})	27.3µW @0.55V
Idle power (P _{idle})	1.78µW/MHz @0.55V
Incr. energy/SOP (E _{SOP})	8.43pJ @0.55V
Global energy/SOP (E _{tot.}	_{SOP}) >12.7pJ @0.55V
Routing flexibility/effic	iency 🙁 (AER)
Fan-in	256
Fan-out	256

Architecture of MorphIC

MorphIC – Chip microphotograph and specifications

1.87mm	Core 0 synapse SRAM CO neur SRAM	Core 1 synapse SRAM
	Core 2 synapse SRAM	C3 neur SRAM Core 3 synapse SRAM

Technology	65nm LP CMOS
Implementation	Digital
Area	3.5mm ² (incl. pads)
Aled	2.86mm ² (excl. pads)
Number of cores	4
Total # neurons (type)	2048 (LIF)
Total # synapses (hier.)	1M (L0), 1M (L1), 64k (L2)
Fan-in (hier.)	512 (L0), 512 (L1), 32 (L2)
Fan-out (hier.)	512 (L0), 3x512 (L1), 4 (L2)
Online learning	Stochastic SDSP, 1-bit weight
Time constant	Biological to accelerated
Supply voltage	0.8V - 1.2V
Max. clock frequency	55MHz (0.8V) – 210MHz (1.2V)
Leakage power (P _{leak})	45µW @0.8V
ldle power (P _{idle})	41.3µW/MHz @0.8V
Energy/SOP (E _{SOP})	30pJ @0.8V

Author Publication Chip name	Schemmel [30] ISCAS, 2010 HICANN	Benjamin [32] PIEEE, 2014 Neurogrid	Qiao [27] Front. NS, 2015 ROLLS	Moradi [29] TBioCAS, 2017 DYNAPs	Park [26] BioCAS, 2014 IFAT	Mayr [28] TBCAS, 2016	Painkras [31] JSSC, 2013 SpiNNaker	Seo [25] CICC, 2011	Akopyan [33] TCAD, 2015 TrueNorth	Davies [34] IEEE Micro, 2018 Loihi	Frenkel TBCAS, 2019a ODIN	Frenkel TBCAS, 2019b MorphIC
Implementation	Mixed-signal	Mixed-signal	Mixed-signal	Mixed-signal	Mixed-signal	Mixed-signal	Digital	Digital	Digital	Digital	Digital	Digital
Technology	$0.18 \mu m$	$0.18 \mu m$	$0.18 \mu m$	$0.18 \mu m$	90nm	28nm	$0.13 \mu m$	45nm SOI	28nm	14nm FinFET	28nm FDSOI	65nm LP
$\# \text{ cores}^{\diamond}$	1	16	1	4	32	1	18	1	4096	128	1	4
Neurosynaptic core area [mm ²]	49	168	51.4	7.5	0.31	0.36	3.75	0.8	0.095	0.4	0.086	0.715
# Izhikevich behaviors [†]	(20)	N/A	(20)	(20)	3	3	Programmable	3	11 (3 neur: 20)	(6)	20	3
# neurons per core	512	64k	256	256	2k	64	max. 1000°	256	256	max. 1024	256	512
Synaptic weight storage	4-bit (SRAM)	Off-chip	Capacitor	12-bit (CAM)	Off-chip	4-bit (SRAM)	Off-chip	1-bit (SRAM)	1-bit (SRAM)	1- to 9-bit (SRAM)	(3+1)-bit (SRAM)	1-bit (SRAM)
Embedded online learning	STDP	No	SDSP	No	No	SDSP	Programmable	S-STDP	No	Programmable	SDSP	S-SDSP
# synapses per core	112k	_	128k	16k	_	8k	_	64k	64k	1M to 114k (1-9 bits)	64k	528k
Time constant	Accelerated	Biological	Biological	Biological	Biological	Bio. to accel.	Bio. to accel.	Biological	Biological	N/A	Bio. to accel.	Bio. to accel.
ru routing	Medium	Medium	Low	Medium	Medium	Low	High	Low	Medium	High	Low	Medium
Flexibility learning	Low	_	Low	Low	_	Low	_	Low	_	High	Low	Low
N I I I I I I I I I I I I I I I I I I I	10.5	390	5	34	6.5k	178	max. 267°	320	2.6k	max. 2.5k	3.0k	716
Neuron core density [neur/mm ²] [*] norm	. –	_	_	_	_	_	max. 5.8k	826	2.6k	max. 1k	3.0k	3.9k
Commence density for (21* raw	2.3k		2.5k	2.1k		22.2k		80k	674k	2.5M to 282k	741k	738k
Synapse core density [syn/mm ²] [*] norm	_	-	_	_	_	_	_	207k	674k	1M to 113k	741k	4M
Supply voltage	1.8V	3.0V	1.8V	1.3V-1.8V	1.2V	0.75V, 1.0V	1.2V	0.53V-1.0V	0.7V-1.05V	0.5V-1.25V	0.55V-1.0V	0.8V-1.2V
	NT / A	(941pJ)▲	$>77 fJ^{\Delta}$	134fJ [△] /30pJ [▲] (1.3V)	22pJ▲	>850pJ▲	>11.3nJ [△] /26.6nJ [▲]	NT / A	26pJ [▲] (0.775V)	>23.6pJ [△] (0.75V)	8.4pJ [△] /12.7pJ [▲] (0.55V)	30pJ [△] /51pJ [▲] (0.8V)
Energy per SOP [‡] raw norm.	N/A	_	_	-	_	_	$>2.4 n J^{4}/5.7 n J^{4}$	N/A	26pJ▲	(66.1pJ [△])	8.4pJ^/12.7pJ▲	12.9pJ^/22pJ▲

⁶ When chips are composed of several neurosynaptic cores, we report the density data associated to a single core. Care should be taken that, depending on the core definition in the different chips, routing resources might be included (all single-core designs, IFAT, TrueNorth, Loihi and MorphIC) or excluded (Neurogrid, DYNAPs and SpiNNaker). As opposed to the other reported designs, we consider the full Neurogrid system, which is composed of 16 NeuroCore chips, each one considered as a core; routing resources are off-chip. For DYNAPs and SpiNNaker, sharing routing overhead among cores would lead to 28-% and 37-% density penalties compared to the reported results, respectively. The HICANN chip can be considered as a core of the BrainScaleS wafer-scale system. Pad area is excluded from all reported designs.

[†] By its similarity with the Izhikevich neuron model, the AdExp neuron model is believed to reach the 20 Izhikevich behaviors [76], but it has not been demonstrated in HICANN, ROLLS and DYNAPs. The neuron model of TrueNorth can reach 11 behaviors per neuron and 20 by combining three neurons together [85]. The neuron model of Loihi is based on a LIF model to which threshold adaptation is added: the neuron should therefore reach 6 Izhikevich behaviors, although it has not been demonstrated.

^o Experiment 1 reported in Table III from [31] is considered as a best-case neuron density: 1000 simple LIF neuron models are implemented per core, each firing at a low frequency.

* Neuron (resp. synapse) core densities are computed by dividing the number of neurons (resp. synapses) per neurosynaptic core by the neurosynaptic core area. Regarding the synapse core density, Neurogrid, IFAT and SpiNNaker use an off-chip memory to store synaptic data. As the synapse core density cannot be extracted when off-chip resources are involved, no synapse core density values are reported for these chips. Values normalized to a 28-nm CMOS technology node are provided for digital designs using the node factor, at the exception of the 14-nm FinFET node of Loihi for which Intel data from [120] has been used.

[‡] The synaptic operation energy measurements reported for the different chips do not follow a standardized measurement process. There are two main categories for energy measurements in neuromorphic chips. On the one hand, incremental values (denoted with $^{\diamond}$) describe the amount of energy paid per each additional SOP computation, they are measured by subtracting the leakage and idle power consumption of the chip, as in Eq. (2.2), although the exact power contributions taken into account in the SOP energy vary across chips. On the other hand, global values (denoted with 4) are obtained by dividing the total chip power consumption by the SOP rate, as in Eq. (2.3). Values normalized to a 28-nm CMOS technology node are provided for digital designs using the node factor, including for the 14-nm FinFET node of Loihi in the absence of reliable data for power normalization in [120]. The conditions under which all of these measurements have been done can be found hereafter. For Neurogrid, a SOP energy of 941pJ is reported for a network of 16 Neurocore chips (1M neurons, 8B synapses, 413k spikes/s): it is a board-level measurement, no chip-level measurement is provided [32]. For ROLLS, the measured SOP energy of 77fJ is reported in [163], it accounts for a point-to-point synaptic input event and includes the contribution of weight adaptation and digital-to-analog conversion, it represents a lower bound as it does not account for synaptic event broadcasting. For DYNAPs, the measured SOP energy of 134fJ at 1.3V is also reported in [163] while the global SOP energy of 30pJ can be estimated from [29] using the measured 800-µW power consumption with all 1k neurons spiking at 100Hz with 25% connectivity (26.2MSOP/s), excluding the synaptic input currents. For IFAT, the SOP energy of 22pJ is extracted by measuring the chip power consumption when operated at the peak rate of 73M synaptic events/s [26]. In the chip of Mayr et al., the SOP energy of 850pJ represents a lower bound extracted from the chip power consumption, estimated by considering the synaptic weights at half their dynamic at maximum operating frequency [28]. For SpiNNaker, an incremental SOP energy of 11.3nJ is measured in [164], a global SOP energy of 26.6nJ at the maximum SOP rate of 16.56MSOP/s can be estimated by taking into account the leakage and idle power; both values represent a lower bound as the energy cost of neuron updates is not included. For TrueNorth, the measured SOP energy of 26pJ at 0.775V is reported in [165], it is extracted by measuring the chip power consumption when all neurons fire at 20Hz with 128 active synapses. For Loihi, a minimum SOP energy of 23.6pJ at 0.75V is extracted from pre-silicon SDF and SPICE simulations, in accordance with early post-silicon characterization [34]; it represents a lower bound as it includes only the contribution of the synaptic operation, without taking into account the cost of neuron update and learning engine update. For ODIN and MorphIC, the detailed measurement process is described in Sections 2.2.2 and 2.3.2, respectively.

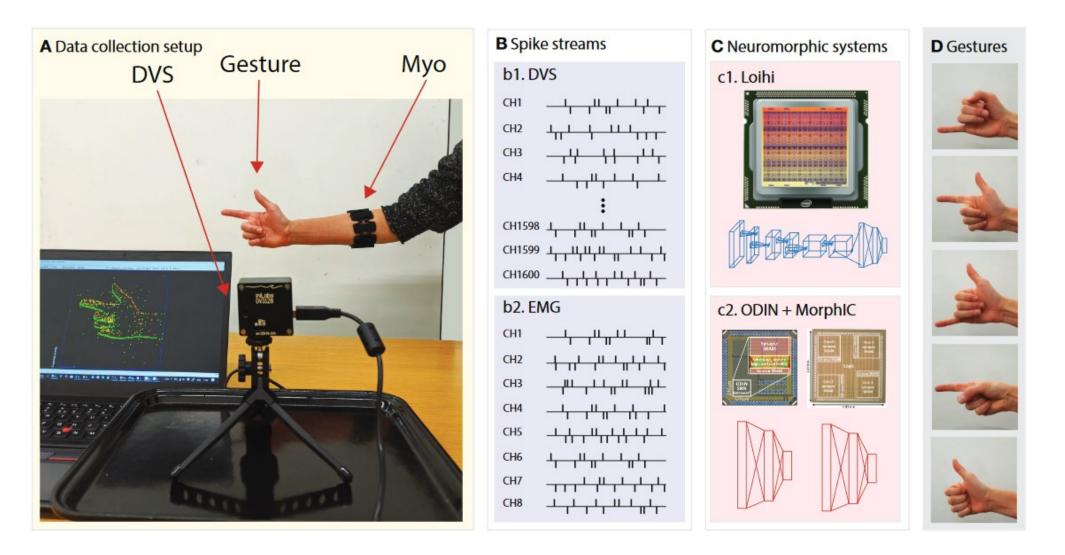
		Mix	ed-signa	al	Digital				
Author	Schemmel	Benjamin	Qiao	Moradi	Painkras	Akopyan	Davies	Frenkel	Frenkel
Publication	ISCAS, 2010	PIEEE, 2014	Front. NS, 2015	TBioCAS, 2017	JSSC, 2013	TCAD, 2015	IEEE Micro, 2018	TBCAS, 2019a	TBCAS, 2019b
Chip name	HICANN	Neurogrid	ROLLS	DYNAPs	SpiNNaker	TrueNorth	Loihi	ODIN	MorphIC
Implementation	Mixed-signal	Mixed-signal	Mixed-signal	Mixed-signal	Digital	Digital	Digital	Digital	Digital
Technology	0.18µm	0.18µm	0.18µm	0.18µm	$0.13 \mu m$	28nm	14nm FinFET	28nm FDSOI	65nm LP
# cores	1	16	1	4	18	4096	128	1	4
Neurosynaptic core area [mm ²]	49	168	51.4	7.5	3.75	0.095	0.4	0.086	0.715
# Izhikevich behaviors	(20)	N/A	(20)	(20)	Programmable	11 (3 neur: 20)	(6)	20	3
# neurons per core	512	64k	256	256	max. 1000	256	max. 1024	256	512
Synaptic weight storage	4-bit (SRAM)	Off-chip	Capacitor	12-bit (CAM)	Off-chip	1-bit (SRAM)	1- to 9-bit (SRAM)	(3+1)-bit (SRAM)	1-bit (SRAM)
Embedded online learning	STDP	No	SDSP	No	Programmable	No	Programmable	SDSP	S-SDSP
# synapses per core	112k	–	128k	16k	Bio. to accel.	64k	1M to 114k (1-9 bits)	64k	528k
Time constant	Accelerated	Biological	Biological	Biological		Biological	N/A	Bio. to accel.	Bio. to accel.
Flexibility routing	Medium	Medium	Low	Medium	High	Medium	High	Low	Medium
learning	Low		Low	Low	—	_	High	Low	Low
Neuron core density $[neur/mm^2]$ raw norm.	10.5	390	5	34	max. 267 max. 5.8k	2.6k 2.6k	max. 2.5k max. 1k	3.0k 3.0k	716 3.9k
Synapse core density [syn/mm ²] raw norm.	2.3k	_	2.5k _	2.1k	_	674k 674k	2.5M to 282k 1M to 113k	741k 741k	738k 4M
Supply voltage Energy per SOP raw norm.	1.8V N/A	3.0V (941pJ)▲ _	1.8V >77fJ [△]	1.3V-1.8V 134fJ [△] /30pJ [▲] (1.3V) 	1.2V >11.3nJ [△] /26.6nJ [▲] >2.4nJ [△] /5.7nJ [▲]	0.7V-1.05V 26pJ▲ (0.775V) 26pJ▲	$0.5V-1.25V > 23.6pJ^{\Delta} (0.75V) (66.1pJ^{\Delta})$	0.55V-1.0V 8.4pJ [△] /12.7pJ [▲] (0.55V) 8.4pJ [△] /12.7pJ [▲]	0.8V-1.2V 30pJ [△] /51pJ [▲] (0.8V) 12.9pJ [△] /22pJ [▲]

Most direct comparison: IBM TrueNorth core vs. ODIN (same technology node, same number of neurons and synapses per neurosynaptic core, same area).

		Mix	ed-signa	al			Digita	al	
Author	Schemmel	Benjamin	Qiao	Moradi	Painkras	Akopyan	Davies	Frenkel	Frenkel
Publication Chin name	ISCAS, 2010 HICANN	PIEEE, 2014 Neurogrid	Front. NS, 2015 ROLLS	TBioCAS, 2017 DYNAPs	JSSC, 2013 SpiNNaker	TCAD, 2015 TrueNorth	IEEE Micro, 2018 Loihi	TBCAS, 2019a ODIN	TBCAS, 2019b
Chip name	moann	Neurogriu	ROLLS	DINALS	Spinnakei	muenonui	LOIII	ODIN	MorphIC
Implementation	Mixed-signal	Mixed-signal	Mixed-signal	Mixed-signal	Digital	Digital	Digital	Digital	Digital
Technology	$0.18 \mu m$	$0.18 \mu m$	$0.18 \mu m$	$0.18 \mu m$	$0.13 \mu m$	28nm	14nm FinFET	28nm FDSOI	65nm LP
# cores	1	16	1	4	18	4096	128	1	4
Neurosynaptic core area [mm ²]	49	168	51.4	7.5	3.75	0.095	0.4	0.086	0.715
# Izhikevich behaviors	(20)	N/A	(20)	(20)	Programmable	11 (3 neur: 20)	(6)	20	3
# neurons per core	512	64k	256	256	max. 1000	256	max. 1024	256	512
Synaptic weight storage	4-bit (SRAM)	Off-chip	Capacitor	12-bit (CAM)	Off-chip	1-bit (SRAM)	1- to 9-bit (SRAM)	(3+1)-bit (SRAM)	1-bit (SRAM)
Embedded online learning	STDP	No	SDSP	No	Programmable	No	Programmable	SDSP	S-SDSP
# synapses per core	112k	_	128k	16k	_	64k	1M to 114k (1-9 bits)	64k	528k
Time constant	Accelerated	Biological	Biological	Biological	Bio. to accel.	Biological	N/A	Bio. to accel.	Bio. to accel.
routing	Medium	Medium	Low	Medium	High	Medium	High	Low	Medium
Flexibility learning	Low	_	Low	Low	_	_	High	Low	Low
NUL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.5	390	5	34	max. 267	2.6k	max. 2.5k	3.0k	716
Neuron core density [neur/mm ²] raw norm.	_	_	_	_	max. 5.8k	2.6k	max. 1k	3.0k	3.9k
c l traw	2.3k		2.5k	2.1k		674k	2.5M to 282k	741k	738k
Synapse core density [syn/mm ²] norm.	_	_			-	674k	1M to 113k	741k	$4\mathrm{M}$
Supply voltage	1.8V	3.0V	1.8V	1.3V-1.8V	1.2V	0.7V-1.05V	0.5V-1.25V	0.55V-1.0V	0.8V-1.2V
		(941pJ)▲	$>77 fJ^{\Delta}$	134fJ [△] /30pJ [▲] (1.3V)	>11.3nJ [△] /26.6nJ [▲]	26pJ [▲] (0.775V)	>23.6pJ [△] (0.75V)	8.4pJ [△] /12.7pJ [▲] (0.55V)	30pJ [△] /51pJ [▲] (0.8V)
Energy per SOP norm.	N/A	-	_	-	$>2.4 n J^{4}/5.7 n J^{4}$	26pJ▲	(66.1pJ [△])	8.4pJ^/12.7pJ▲	12.9pJ [△] /22pJ [▲]

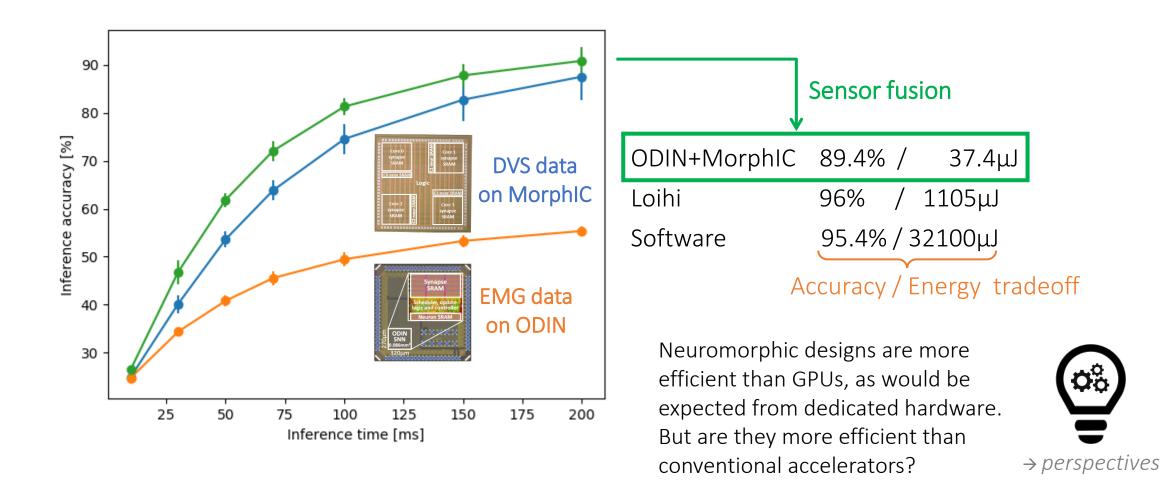
Area

ODIN and MorphIC have the highest neuron and synapse densities among all SNNs with embedded synaptic weight storage


		Mix	ed-signa	l –			Digita	al	
Author	Schemmel	Benjamin	Qiao	Moradi	Painkras	Akopyan	Davies	Frenkel	Frenkel
Publication	ISCAS, 2010	PIEEE, 2014	Front. NS, 2015	TBioCAS, 2017	JSSC, 2013	TCAD, 2015	IEEE Micro, 2018	TBCAS, 2019a	TBCAS, 2019b
Chip name	HICANN	Neurogrid	ROLLS	DYNAPs	SpiNNaker	TrueNorth	Loihi	ODIN	MorphIC
Implementation	Mixed-signal	Mixed-signal	Mixed-signal	Mixed-signal	Digital	Digital	Digital	Digital	Digital
Technology	$0.18 \mu m$	$0.18 \mu m$	$0.18 \mu m$	$0.18 \mu m$	$0.13 \mu m$	28nm	14nm FinFET	28nm FDSOI	65nm LP
# cores	1	16	1	4	18	4096	128	1	4
Neurosynaptic core area [mm ²]	49	168	51.4	7.5	3.75	0.095	0.4	0.086	0.715
# Izhikevich behaviors	(20)	N/A	(20)	(20)	Programmable	11 (3 neur: 20)	(6)	20	3
# neurons per core	512	64k	256	256	max. 1000	256	max. 1024	256	512
Synaptic weight storage	4-bit (SRAM)	Off-chip	Capacitor	12-bit (CAM)	Off-chip	1-bit (SRAM)	1- to 9-bit (SRAM)	(3+1)-bit (SRAM)	1-bit (SRAM)
Embedded online learning	STDP	No	SDSP	No	Programmable	No	Programmable	SDSP	S-SDSP
# synapses per core	112k	_	128k	16k	_	64k	1M to 114k (1-9 bits)	64k	528k
Time constant	Accelerated	Biological	Biological	Biological	Bio. to accel.	Biological	N/A	Bio. to accel.	Bio. to accel.
routing	Medium	Medium	Low	Medium	High	Medium	High	Low	Medium
Flexibility learning	Low	_	Low	Low	_	_	High	Low	Low
N I I I I I I I I I I I I I I I I I I I	10.5	390	5	34	max. 267	2.6k	max. 2.5k	3.0k	716
Neuron core density [neur/mm ²] norm.	_	_	_	_	max. 5.8k	2.6k	max. 1k	3.0k	3.9k
a la la la calaraw	2.3k		2.5k	2.1k		674k	2.5M to 282k	741k	738k
Synapse core density [syn/mm ²] norm.	_	_	_	_	_	674k	1M to 113k	741k	4M
Supply voltage	1.8V	3.0V	1.8V	1.3V-1.8V	1.2V	0.7V-1.05V	0.5V-1.25V	0.55V-1.0V	0.8V-1.2V
	NI / A	(941pJ)▲	$>77 \mathrm{fJ}^{\Delta}$	134fJ [△] /30pJ [▲] (1.3V)	>11.3nJ [△] /26.6nJ [▲]	26pJ [▲] (0.775V)	>23.6pJ [△] (0.75V)	8.4pJ [△] /12.7pJ [▲] (0.55V)	30pJ [△] /51pJ [▲] (0.8V)
Energy per SOP norm.	N/A	_	-	- '	$>2.4 n J^{\Delta}/5.7 n J^{A}$	26pJ▲	$(66.1 \text{pJ}^{\Delta})$	8.4pJ^/12.7pJ▲	12.9pJ [△] /22pJ [▲]

Power

ODIN has the lowest energy per synaptic event among all digital SNNs, MorphIC keeps a competitive energy efficiency. They outperform subthreshold analog SNNs in accelerated time, but not for biological-time processing.


Results on the spiking EMG/DVS sensor fusion benchmark

[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]

Results on the spiking EMG/DVS sensor fusion benchmark

[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]

See the ODIN and MorphIC papers for more benchmarking, incl. online- and offline-trained MNIST.

Outline

Part I – Bottom-up neuromorphic design

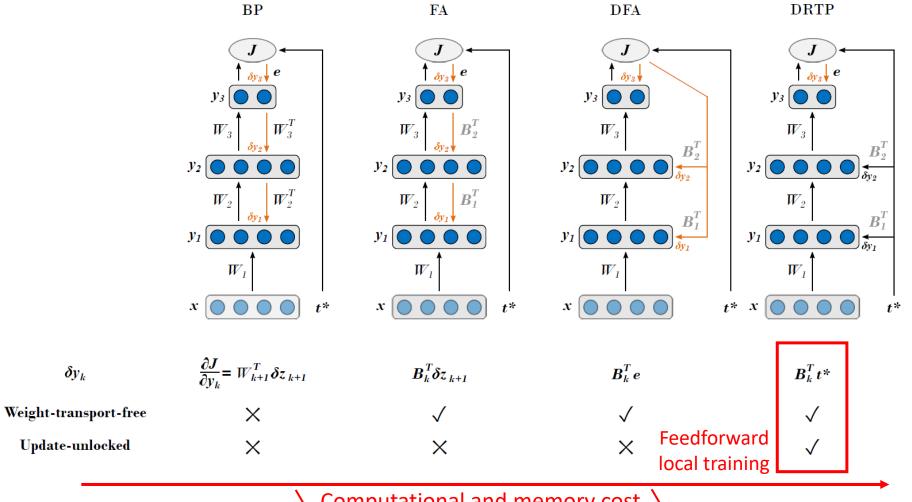
- Building blocks
- Integration

Part II – Top-down neuromorphic design

• Algorithms

Minimizing the training cost of neural networks for adaptive edge computing

[Frenkel & Lefebvre, Front. Neurosci., 2021]


Integration

Conclusion and perspectives

Learning without feedback

Releasing the weight transport and update locking of backprop

Computational and memory cost \setminus

Direct Random Target Projection (DRTP) Ideal use cases?

Adaptive edge computing

- Very low power and area overheads can be expected for an on-chip implementation.
- Datasets representative of the complexity associated to autonomous smart sensors: MNIST or CIFAR-10.
 - \rightarrow We'll verify these claims in silico.

Disclaimer: whether DRTP scales to ImageNET is probably **not** the right question. ☺

Neuroscience

DRTP could come in line with recent findings in cortical areas that reveal the existence of output-independent target signals in the dendritic instructive pathways of intermediate-layer neurons.

[Magee & Grienberger, Annual Review of Neuroscience, 2020]

Outline

Part I – Bottom-up neuromorphic design

- Building blocks
- Integration

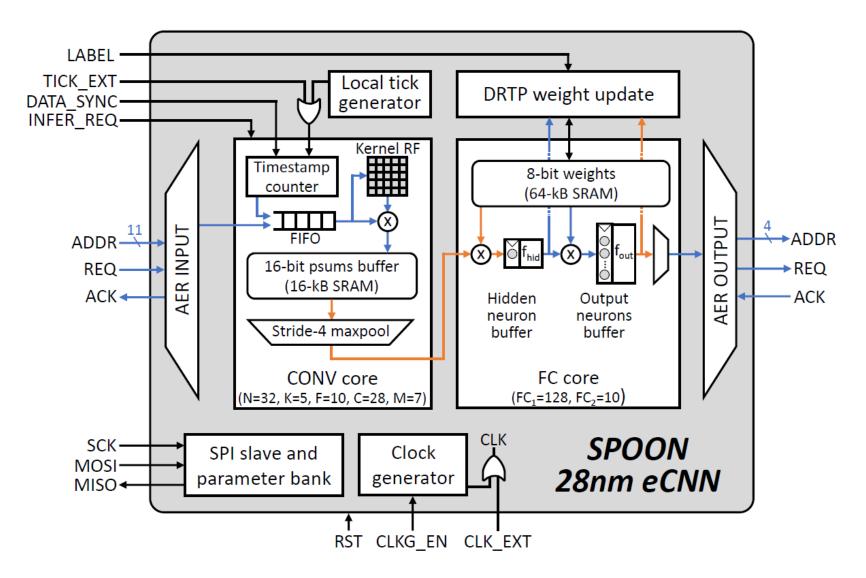
Part II – Top-down neuromorphic design

- Algorithms
- Integration

Neuromorphic accelerators

[Frenkel, *ISCAS*, 2020]

Conclusion and perspectives


Which bio-inspired elements?

Taking a step back with the top-down design strategy

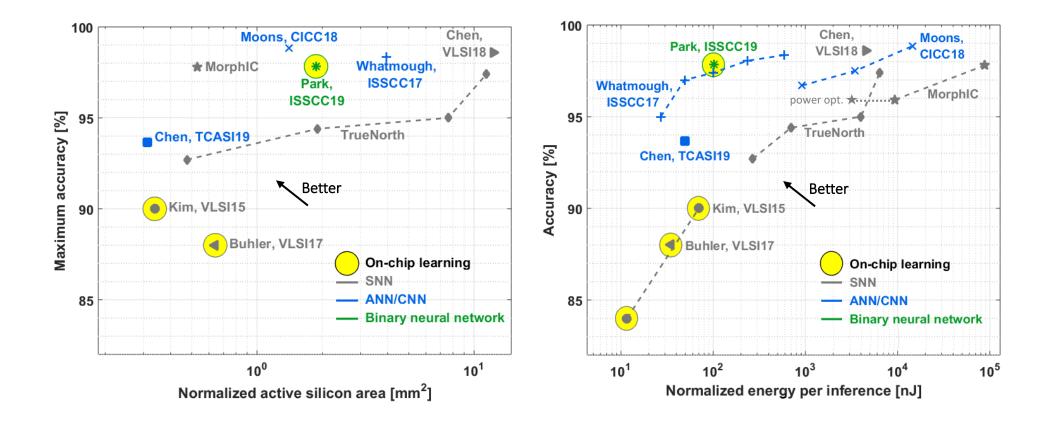
Architecture of SPOON

SPOON – A <u>Sp</u>iking <u>O</u>nline-Learning C<u>o</u>nvolutional <u>N</u>euromorphic Processor

SPOON – Chip microphotograph and specifications

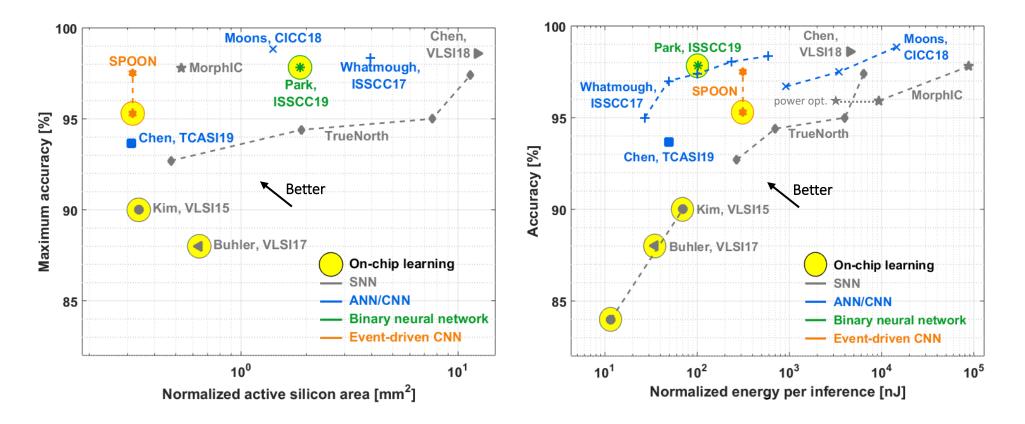
951μm	1 1 1 2 2 3	<u>aaaa</u> amaa aaaaa
SPOON		
28-nm eCN (0.32mm ²)	331µ	m 🛔

(pre-silic	on numbers, not yet updated)	
Technology	28nm FDSOI CMOS	journ
Implementation	Digital	
Area	0.32mm ² (0.26 mm ² excl. rails)	
Topology	C5×5@10–FC128–FC10	
Online learning	Stochastic DRTP, 8-bit weights	
Time constant	Biological to accelerated	
Supply voltage	0.6V - 1.0V	
Max. clock frequency	150MHz	
Leakage power	$61\mu W$ at 0.6V	
Energy for CONV core	1.7nJ/event at 0.6V	DR
Energy for FC core	55nJ/inference at 0.6V	
Online learning overhead	16.8% in power, 11.8% in area	implem
		at a v


Stay tuned for the journal extension!

DRTP can be implemented on-chip at a very low cost!

Benchmarking: MNIST and N-MNIST


SPOON benchmarking

Against SoA spiking neural networks on MNIST

SPOON benchmarking

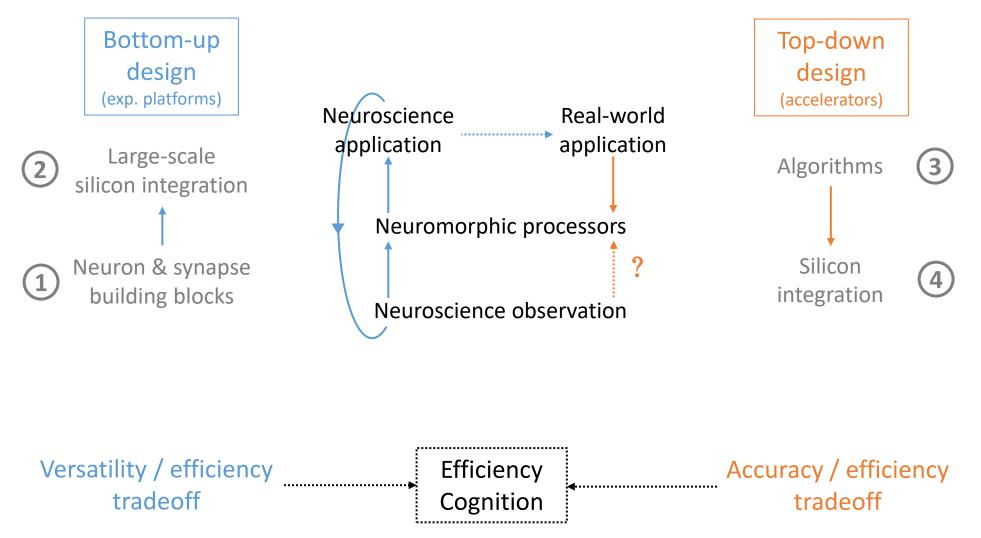
Against SoA spiking neural networks on MNIST

Only SPOON allows reaching the efficiency of ANN/CNN/BNN accelerators while enabling online learning with event-based sensors.

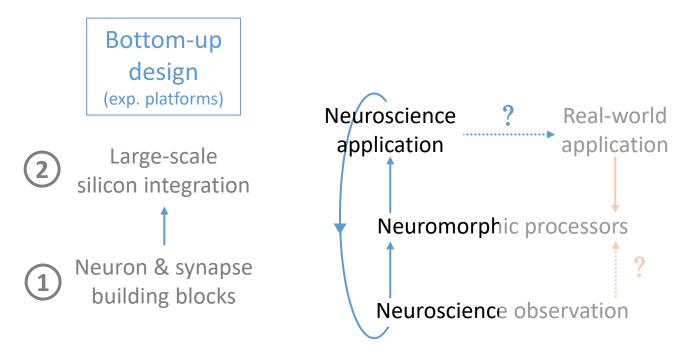
Outline

Part I – Bottom-up neuromorphic design

- Building blocks
- Integration

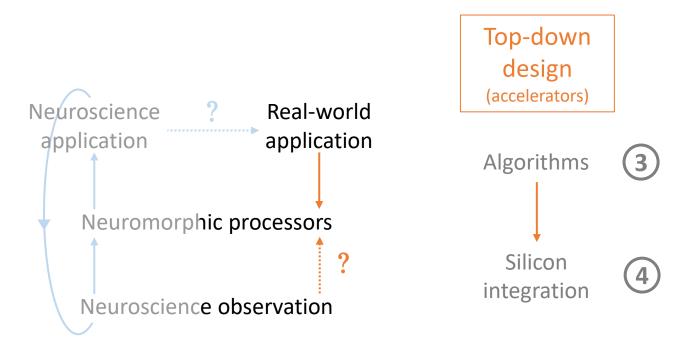

Part II – Top-down neuromorphic design

- Algorithms
- Integration


Conclusion and perspectives

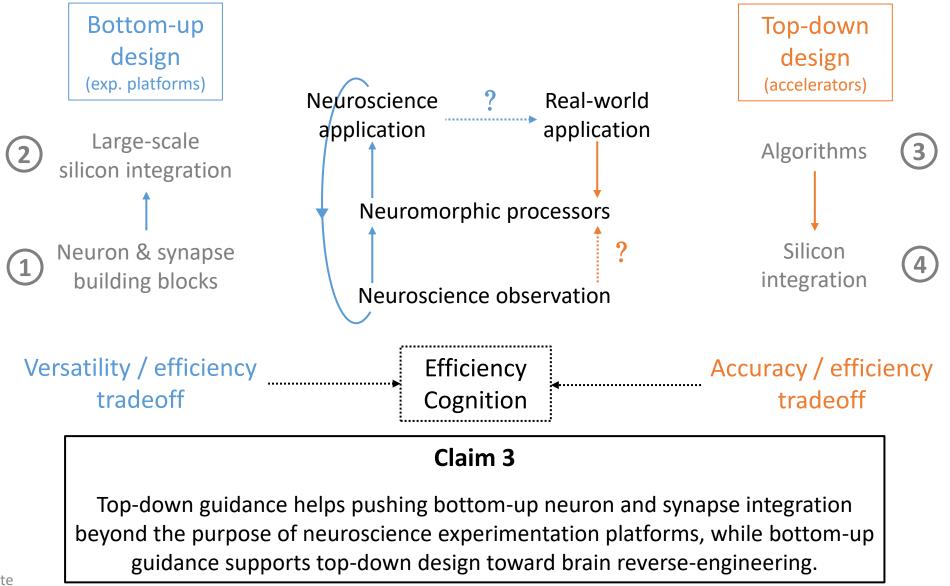
Summary of the key messages, next directions

Unveiling roads to embedded cognition


Unveiling roads to embedded cognition

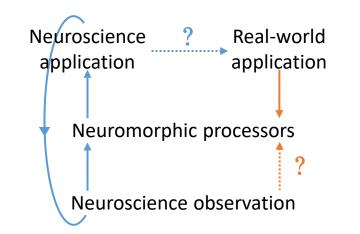
Versatility / efficiency tradeoff Claim 1

Hardware-aware neuroscience model design and selection allows reaching record neuron and synapse densities with lowpower operation for large-scale integration *in silico*.


Unveiling roads to embedded cognition

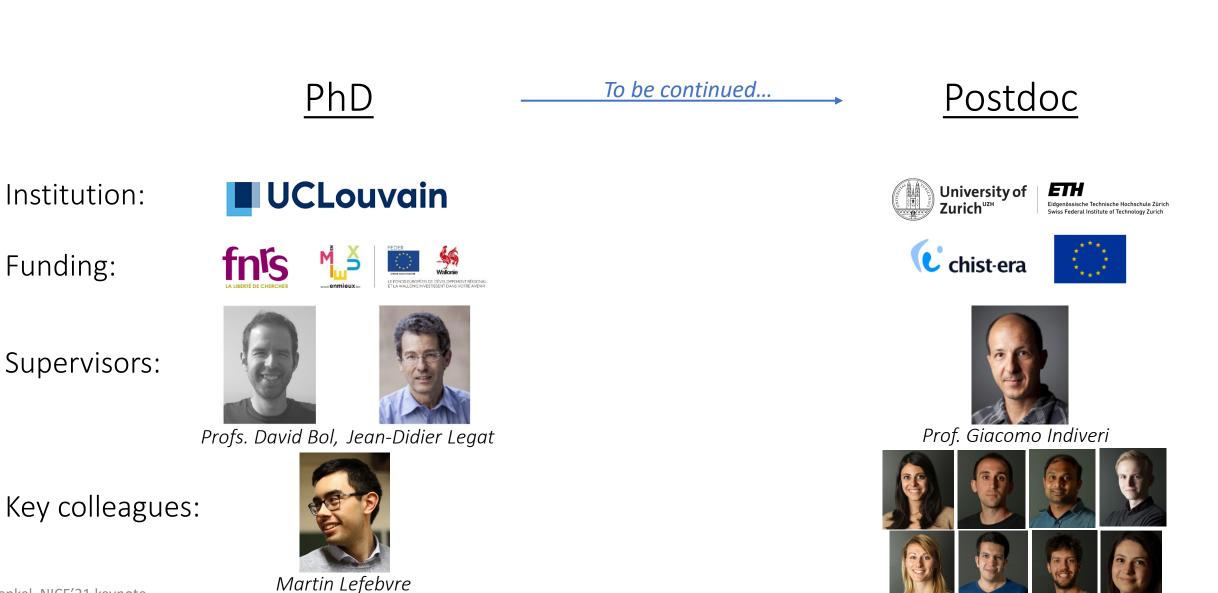
Combining event-driven and frame-based processing with weight-transport-free update-unlocked training supports low-cost adaptive edge computing with spike-based sensors. Accuracy / efficiency tradeoff

Unveiling roads to embedded cognition



Perspectives

Neuromorphic engineering and spiking neural networks:


"Can we make it work?" → "Will it bring a competitive advantage?" (not only against GPUs) Need something better than MNIST → Audio (KWS) and bio-signal processing (time, biological-time) [Davies, Nat. Mach. Intel., 2019]

- Promising avenue: fine-grained mixed-signal design.
- Bottom-up trend: dendrites
- Top-down trend: new wave of training algorithms mapping onto bio-plausible primitives [Sa
- Cognition: a case for neuromorphic robots? [Man & Damasio, Nat. Mach. Intel., 2019]

[Sacramento, NeurIPS'18] [Payeur, bioRxiv, 2020] [Bellec, Nat. Comms., 2020]

Acknowledgments

Frenkel, NICE'21 keynote

Questions?

n cfrenkel

Charlotte-Frenkel

ChFrenkel

charlotte@ini.uzh.ch

Main references:

- ODIN: [C. Frenkel et al. "MorphIC: A 65-nm 738k-synapse/mm² quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learning," *IEEE Trans. BioCAS*, 2019]
- MorphIC: [C. Frenkel et al., "A 0.086-mm² 12.7-pJ/SOP 64k-synapse 256neuron online-learning digital spiking neuromorphic processor in 28nm CMOS," *IEEE Trans. BioCAS*, 2019]
- DRTP: [C. Frenkel, M. Lefebvre et al., "Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks," Frontiers in Neuroscience, 2021]
- SPOON: [C. Frenkel et al., "A 28-nm convolutional neuromorphic processor enabling online learning with spike-based retinas," *IEEE ISCAS*, 2020]

Open-sourced! github.com/ChFrenkel/ODIN

Open-sourced! github.com/ChFrenkel/Direct RandomTargetProjection

Journal extension coming soon