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Human 

Neuromorphic Engineering – Why?

2[Silver & Hassabis, https://deepmind.com/blog/article/alphago-zero-starting-scratch, 2017]
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Neuromorphic Engineering – Why?

[Poon & Zhou, Front. Neurosci., 2011]
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Moore’s law?

Data representation: 
sparse, event-driven spike trains

Architecture: distributed

processing with co-located
neurons and synapses
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Silicon neuron
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Neuromorphic Engineering – How?

[Poon & Zhou, Front. Neurosci., 2011]
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A design strategy toward efficiency and cognition?
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Silicon neuron
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NeuroGrid
(Stanford)

Subthreshold analog (mixed-signal)

ROLLS (ETHZ) DYNAPs (ETHZ)

Biological-time brain emulation
and basic research

Software

CPU / GPU

Large-scale full-custom digital designs

TrueNorth (IBM) Loihi (Intel)

Low-cost simulation: 
neuromorphic (slow),
neural networks (fast)

Cognitive computing
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Neuromorphic Engineering – How?
A design strategy toward efficiency and cognition?

Dedicated/distributed sim.

FPGA SpiNNaker 1/2
(Manchester, TUD)

ODIN (UCLouvain) MorphIC (UCLouvain)

Small-scale full-custom digital designs

331µm

951µm

SPOON
28-nm eCNN
(0.32mm²)

SPOON (UCLouvain)

See also:
[Seo, CICC’11]
[Knag, JSSC’15]
[Park, ISSCC’19]

Simulation acceleration 
for neuroscience

and neural networks

Bio-inspired edge computing
(experimentation platforms)

Low-cost adaptive edge computing 
(dedicated accelerators)
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Above-threshold analog (mixed-signal)

BrainScaleS 1/2 (Heidelberg)

Neuroscience
simulation acceleration



Neuromorphic Engineering – How?

Neuromorphic processors

Neuroscience observation

Real-world
application

Neuroscience
application

?

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Algorithms

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Neurons and synapses as adaptive processing and memory elements

[Frenkel, ISCAS, 2017]
[Frenkel, BioCAS, 2017]
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High
Low potential

Bug or feature?

How can we make the best of both worlds?

Analog Digital

Design time
Technology scaling

Noise, mismatch, PVT

Biophysical versatility
Area

Good

Design strategy
Analog or digital?

emulation simulation

Biophysical behavior

Low
High potential
Low sensitivity

Bad

phenomenological 
modeling
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→ perspectives
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Design strategy
What should we aim for and phenomenologically implement?

Neurons

• 20 Izhikevich behaviors of cortical spiking neurons

Synapses

• Spike-based online learning

10

Introduce competition for 
unsupervised learning in 
winner-take-all networks 

[Kreiser, BioCAS’17]

Useful for time-to-first-spike 
encodings

Stereo sound source 
localization 

[Schoepe, BioCAS’19]

Discrimination of specific 
frequencies

Frenkel, NICE’21 keynote [Izhikevich, IEEE Trans. NN, 2004]



Proposed phenomenological digital neuron
Tackling the versatility/efficiency tradeoff
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Park, 2014
(90nm)

Molin, 2017 
(0.5mm)

Sourikopoulos, 2017
(65nm)

13

Aamir, 2018
(65nm)

11

Time-multiplexed
version

Key features:

- Entirely event-driven
(no time-stepped integration)

- Only 4 functions necessary:

▪ Threshold adaptation

▪ Time window generation

▪ Simple template matching

▪ Membrane potential
sign rotation

Frenkel, NICE’21 keynote

Rubino, 2021
(22nm)



Design strategy
What should we aim for and phenomenologically implement?

Neurons

• 20 Izhikevich behaviors of cortical spiking neurons

Synapses

• Spike-based online learning

12Frenkel, NICE’21 keynote

→ perspectives



Proposed digital synapse
Tackling the versatility/efficiency tradeoff

STDP SDSP

Key challenge – Fan-in = 100-10000 synapses/neuron

13Frenkel, NICE’21 keynote

Custom 
dual-port

SRAM

[Seo, CICC’11]

Foundry 
single-port

SRAM

Record 
density

[Cassidy,
ISCAS’11]



Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Proposed neuromorphic experimentation platforms

[Frenkel, Trans. BioCAS, 2019a]
[Frenkel, Trans. BioCAS, 2019b]
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ODIN – A 256-neuron 64k-synapse Online-learning Digital Neurosynaptic core

ODIN 
SNN

256²-synapse
memory

(32kB SRAM)

256-neuron 
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ODIN – Chip microphotograph and specifications

Routing flexibility/efficiency  (AER)
Fan-in
Fan-out

256
256

16Frenkel, NICE’21 keynote



Chip-level architecture Core architecture

Neurons/core          512
Synapses/core        528k

Architecture of MorphIC

Fan-in    1k
Fan-out    2k

Stochastic SDSP (S-SDSP) 
on binary synapses
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MorphIC – Chip microphotograph and specifications
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Comparison with SoA experimentation platforms
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DigitalMixed-signal

Most direct comparison: IBM TrueNorth core vs. ODIN (same technology node, 
same number of neurons and synapses per neurosynaptic core, same area).

Synapses
Neurons
Energy/SOP
Connectivity

ODIN
4-bit with learning

20 Izh. beh.
12.7pJ @0.55V

AER

TrueNorth
1-bit without learning

11 Izh. beh.
26pJ @0.775V

large-scale mesh

Comparison with SoA experimentation platforms

20
MorphIC
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Area
ODIN and MorphIC have the highest neuron and synapse densities 

among all SNNs with embedded synaptic weight storage

DigitalMixed-signal

Comparison with SoA experimentation platforms

21Frenkel, NICE’21 keynote



Power
ODIN has the lowest energy per synaptic event among all digital SNNs,

MorphIC keeps a competitive energy efficiency.
They outperform subthreshold analog SNNs in accelerated time,
but not for biological-time processing. 

Comparison with SoA experimentation platforms
DigitalMixed-signal
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Results on the spiking EMG/DVS sensor fusion benchmark
[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]
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Results on the spiking EMG/DVS sensor fusion benchmark

ODIN+MorphIC 89.4%  /       37.4µJ

Loihi 96%     /   1105µJ

Software 95.4% / 32100µJ

Sensor fusion

[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]

EMG data
on ODIN

DVS data 
on MorphIC

24

See the ODIN and MorphIC papers for more 
benchmarking, incl. online- and offline-trained MNIST.

→ perspectives

Neuromorphic designs are more 
efficient than GPUs, as would be 
expected from dedicated hardware.
But are they more efficient than 
conventional accelerators?

Frenkel, NICE’21 keynote

Accuracy / Energy  tradeoff



Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Minimizing the training cost of neural networks for adaptive edge computing

[Frenkel & Lefebvre, Front. Neurosci., 2021]
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Learning without feedback
Releasing the weight transport and update locking of backprop

s

Computational and memory cost

[Lillicrap, Nat. Comms., 2016]    [Nokland, NeurIPS, 2016]

Feedforward
local training

26Frenkel, NICE’21 keynote



Direct Random Target Projection (DRTP)
Ideal use cases?
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Neuroscience

DRTP could come in line with recent findings in cortical areas that 
reveal the existence of output-independent target signals in the 
dendritic instructive pathways of intermediate-layer neurons.

[Magee & Grienberger, 
Annual Review of 

Neuroscience, 2020]

Adaptive edge computing

▪ Very low power and area overheads can be expected
for an on-chip implementation.

▪ Datasets representative of the complexity associated to 
autonomous smart sensors: MNIST or CIFAR-10.

→We’ll verify these claims in silico.

Disclaimer: whether DRTP 
scales to ImageNET is probably 

not the right question. ☺



Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives 

Outline

Neuromorphic accelerators [Frenkel, ISCAS, 2020]
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Event-driven CNN
(eCNN)

Which bio-inspired elements?
Taking a step back with the top-down design strategy

Neuromorphic processors

Neuroscience observation

Real-world
application

Neuroscience
application

?

DRTP

?

Adaptive edge computing
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Convolutional
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…

FC1

…

FC2

fout

Fully-connected
(frame-based + event-driven)

Output
label

DRTP-enabled!

fhid
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[S.C. Liu, 2014]
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sparse

Computation is event-driven

time-based



SPOON – A Spiking Online-Learning Convolutional Neuromorphic Processor

Architecture of SPOON

30Frenkel, NICE’21 keynote



331µm

951µm

SPOON
28-nm eCNN
(0.32mm²)

SPOON – Chip microphotograph and specifications

(pre-silicon numbers, not yet updated)

DRTP can be
implemented on-chip 

at a very low cost!

Frenkel, NICE’21 keynote

Benchmarking:  MNIST  and  N-MNIST

31

Stay tuned for the 
journal extension!

→ perspectives



SPOON benchmarking
Against SoA spiking neural networks on MNIST

power opt.

32Frenkel, NICE’21 keynote

BetterBetter



SPOON benchmarking

power opt.

Only SPOON allows reaching the efficiency of ANN/CNN/BNN accelerators while 
enabling online learning with event-based sensors.

Against SoA spiking neural networks on MNIST

33Frenkel, NICE’21 keynote

BetterBetter



Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Summary of the key messages, next directions

34Frenkel, NICE’21 keynote



Neuromorphic Engineering – Key Claims

Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition
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1

3

4
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Neuroscience observation

Algorithms

?
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Neuroscience observation

?

Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Learning 
algorithm

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition
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Claim 1 

Hardware-aware neuroscience model design and selection 
allows reaching record neuron and synapse densities with low-

power operation for large-scale integration in silico.

Neuromorphic Engineering – Key Claims
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Neuroscience observation

Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition
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Claim 2 

Combining event-driven and frame-based processing with 
weight-transport-free update-unlocked training supports

low-cost adaptive edge computing with spike-based sensors.

Neuromorphic Engineering – Key Claims
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Algorithms

?

Frenkel, NICE’21 keynote



Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition

2

1

3

4

Claim 3 

Top-down guidance helps pushing bottom-up neuron and synapse integration 
beyond the purpose of neuroscience experimentation platforms, while bottom-up 

guidance supports top-down design toward brain reverse-engineering.

Neuromorphic Engineering – Key Claims
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Neuroscience observation

Algorithms

?
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Perspectives
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▪ Neuromorphic engineering and spiking neural networks:
“Can we make it work?”                                 “Will it bring a competitive advantage?” (not only against GPUs)
Need something better than MNIST            Audio (KWS) and bio-signal processing   (time, biological-time)

▪ Promising avenue: fine-grained mixed-signal design.

▪ Bottom-up trend: dendrites

▪ Top-down trend: new wave of training algorithms mapping onto bio-plausible primitives

▪ Cognition: a case for neuromorphic robots?

[Davies, Nat. Mach. Intel., 2019]

Neuromorphic processors

Real-world
application

Neuroscience
application

Neuroscience observation

?

?

[Sacramento, NeurIPS’18]
[Payeur, bioRxiv, 2020]
[Bellec, Nat. Comms., 2020]

[Man & Damasio, Nat. Mach. Intel., 2019]
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- DRTP: 

- SPOON:

Open-sourced!
github.com/ChFrenkel/ODIN

Open-sourced!
github.com/ChFrenkel/Direct

RandomTargetProjection

ChFrenkel

[C. Frenkel et al. “MorphIC: A 65-nm 738k-synapse/mm² quad-core
binary-weight digital neuromorphic processor with stochastic spike-
driven online learning,” IEEE Trans. BioCAS, 2019]
[C. Frenkel et al., “A 0.086-mm² 12.7-pJ/SOP 64k-synapse 256-
neuron online-learning digital spiking neuromorphic processor in
28nm CMOS,” IEEE Trans. BioCAS, 2019]
[C. Frenkel, M. Lefebvre et al., “Learning without feedback: Fixed
random learning signals allow for feedforward training of deep
neural networks,” Frontiers in Neuroscience, 2021]
[C. Frenkel et al., “A 28-nm convolutional neuromorphic processor
enabling online learning with spike-based retinas,” IEEE ISCAS, 2020] Journal extension coming soon
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Questions?

https://github.com/ChFrenkel/ODIN/
https://github.com/ChFrenkel/DirectRandomTargetProjection

