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Numenta has two goals

1) Reverse engineer the neocortex

2) Apply what we learn to AI and ML



Organ of intelligence

- Sensory perception: vision, touch, hearing

- Motor: limbs, fingers, vocalization

- Language

- Abstract thought: math, science, engineering

Attributes

- Learns continuously

- Learns rapidly

- Efficient: 20 watts for brain

- Flexible: learns thousands of tasks

1) The neocortex learns a model of the world.

2) It is a distributed model.

There are thousands of complete, yet complementary models of everything you know.
They “vote” to reach a consensus.

3) Each cortical column is a complete modeling system.
Columns use “reference frames” to provide structure to data and to plan movements.

4) Reference frames in the cortex are derivatives of grid cells and place cells.

Today’s AI is not as capable, not even close.

What we have learned, outline of talk

70% of brain



The neocortex learns a model of the world

Your model of the world, the number of things you know, is huge

- Thousands of physical objects, how they look, feel, and sound
- How objects are composed other objects
- Where objects are located relative to each other
- How objects behave
- Conceptual “objects” such as math, democracy

We use the model to infer and create goal-oriented behaviors

The model is predictive
- Prediction error is the primary training signal

Q: How does the architecture of the neocortex support learning this model?



Cortical columns

Approx. 150,000 columns (1 x 2.5mm)

Mountcastle 1979:

- All columns look similar because they perform the same intrinsic function.

- What a column does is determined by what it is connected to.

- Understanding what a column does will have “great generalizing significance”.

1) Columns are complex

100K neurons, 500M synapses

Dozens of cell types, hundreds of minicolumns

Whatever they do is also complex

2) All columns have a motor output

3) All columns are remarkably similar

Mountcastle 1997



Thought Experiment
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A single column learns completes 
models of objects by integrating 
features and locations over time.

“A Theory of How Columns in the Neocortex Enable Learning the 
Structure of the World” (Hawkins, et. al., 2017)

Multiple columns can infer objects in a single 
sensation by “voting” on object identity.

?

Sensed feature



Reference Frames in the Old Brain 

“Grid cells” in entorhinal cortex
- Reference frames for environments

“Place cells” in hippocampus
- Sensory driven representation of location

Grid and place cell equivalents exist in every cortical column
- Create reference frames for objects

Moser, 2005

Hawkins et. al., 2018

Lewis et. al., 2018

Hawkins et. al., 2017

Okeefe, 1978



Entorhinal Cortex

Room

Neocortex

Grid cells
Represent location of body in a 
reference frame relative to 
room.

Cortical grid cells
Represent location of sensor in 
a reference frame relative to 
object.



Felleman, van Essen, 1991

Retina

Simple features

Complex features

Object

v1

v2

Hierarchy

- Most connections are not hierarchical.
- More than 40% of all possible connections exist.
- Primary and secondary regions are largest.
- Primary sensory regions exhibit multi-modal
responses.

Retina Skin

The Thousand Brains Theory of Intelligence

- There are thousands of complementary models

- Most connections are for voting. (blue)
We are aware of the consensus

- Hierarchical connections pass complete objects



Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence 
for grid cells in a human memory network. Nature

Growing empirical evidence for grid cells in the neocortex

Constantinescu, A., O’Reilly, J., Behrens, T. (2016) 
Organizing Conceptual Knowledge in Humans with a 
Gridlike Code. Science



Intelligence requires learning a model of the world.

1) Each cortical column is a complete sensory-motor modeling system.

2) Columns vote to reach a consensus.

3) Cortical columns use reference frames to represent knowledge.
- objects, body, concepts

I believe true machine intelligence (AGI) must work on the same 
principles.

Summary



2019: A Framework for Intelligence and Cortical Function Based on Grid Cells in the Neocortex
2019: Locations in the Neocortex: A Theory of Sensorimotor Object Recognition Using Cortical Grid Cells
2019: Flexible Representation and Memory of Higher-Dimensional Cognitive Variables with Grid Cells
2017: A Theory of How Columns in the Neocortex Enable Learning the Structure of the World  
2017: The HTM Spatial Pooler—A Neocortical Algorithm for Online Sparse Distributed Coding
2016: Why Neurons Have Thousands of Synapses, A Theory of Sequence Memory in Neocortex
2016: Continuous Online Sequence Learning with an Unsupervised Neural Network Model

Neuroscience Papers

See Numenta.com for annotated list of papers

Section 1: Neuroscience

Section 2: AI

Section 3: Implications

March 2, 2021



ROADMAP TO MACHINE INTELLIGENCE

Performance
Robustness

Point neuron

Continuous 
learning

CNN

Invariant 
representations

Fast learning

Sparsity

Active 
Dendrites

Reference 
frames Model voting



The neocortex is highly sparse

• Neural activity and connectivity are both highly sparse
– Only 0.5% to 2% of cells are active at any time
– Only 1% - 5% of connections actually exist between two connected layers
– Dynamic structural plasticity - 30% of connections change every few days

(Attwell & Laughlin, 2001; Lennie, 2003; Holmgren et al., 2003; Loewenstein, et al., 2015)

• Nothing like today’s dense deep learning networks

Source: Prof. Hasan, Max-Planck-Institute for Research



High dimensional sparse representations

• High dimensional sparse representations 
are extremely robust to noise and failure

• Information content of sparse vectors 
increases with dimensionality, without 
introducing additional non-zeros

• For a given task, can reduce the number 
of non-zero parameters by increasing 
dimensionality

(How Can We Be So Dense? The Robustness of Highly Sparse Representations, 

Ahmad & Scheinkman, ICML Robustness Workshop 2019)

Sparse vector dot product: probability of false matches



Sparse deep networks



Sparse layers

(Hawkins, Ahmad, & Dubinsky, 2011)
(Makhzani & Frey, 2015)
(Ahmad & Scheinkman, 2019)1) Sparse weights: weight matrix is sparse, enforced via mask

2) Sparse activations: outputs of top-k units are maintained

3) An exponential boosting term favors units with low activation frequency:

This helps maximize the overall entropy of the layer.

4)   Extension to sparse convolutional layers



Network
Mean 

accuracy
Mean accuracy 

with noise
Non-zero 

weights
Sparsity

Dense CNN 97.05% 31.08% 1,700,000 0%

Sparse CNN 97.03% 44.45% 160,952 90.6%

Dense Small1 96.14% - 536,008 0%

Dense Small2 95.89% - 270,376 0%

Sparse Large 97.04% - 64,220 98.1%

Dataset of spoken commands

• One word utterances, thousands of individuals

• State of the art accuracy is 95 - 97.5% for 10 categories

• Tested robustness to white noise

1) Networks used two sparse CNN layers + one sparse linear layer + one softmax output layer.

2) Trained with random static sparse masks

Google speech commands dataset



performance on FPGA
• Implemented sparse and dense networks on 

three Xilinx chips

– Processing spoken words (Google Speech 
Commands)

– Chips designed for datacenter and embedded 
(internet of things) applications

– These chips are current generation, available on 
market (16nm process)

Alveo U250 Zynq UltraScale+ ZCU104 Zynq UltraScale+ ZU3EG

System logic cells 1,728,000 504,000 154,000

Memory 54MB 4.75MB 0.95MB

DSP slices 12,288 1,728 360

System power 225W 60W 24W



Name of chip Network 
type

Throughput for 
single network

Speedup 
over dense 

Number of 
networks on 
chip

Full chip 
throughput 

Full chip 
speedup

Alveo U250 Dense 3,049 - 4 12,195 -

Alveo U250 Sparse 31,250 10.25 20 625,000 51.25

ZCU104 Dense 6,410 - 1 6,410 -

ZCU104 Sparse 26,667 4.16 3 80,000 12.48

ZU3EG Dense 0 - 0 0 -

ZU3EG Sparse 21,053 Infinite 1 21,053 Infinite

Sparse networks: more than 50X faster

Overall >50X throughputEach network is 
>10X faster Dense network does not 

even fit on the small chip



Sparse networks are far more power efficient

Name of chip Network type System power Words / Watt Relative efficiency 
(compared to best 
dense network)

Alveo U250 Dense 225 54 0.507

Alveo U250 Sparse 225 2,778 26.00

ZCU104 Dense 60 107 1.0

ZCU105 Sparse 60 1,333 12.48

ZU3EG Dense 24 0 -

ZU3EG Sparse 24 877 8.211

>25X efficiency



Structural plasticity for hardware
• Dynamic block sparse weights, trained using variational technique

• Training respects hardware constraints

Output features
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During training, each block has a 
probability of being “on”

Weights are noisy, trained to be quantizable

𝑤𝑖𝑗 = 𝑤𝑖𝑗𝑧𝑖𝑗
𝑧𝑖𝑗 ~ 𝑁 1, 𝛼𝑖𝑗

Number of non-zero blocks per 
column controlled for balanced 

computation



Sparse resnet50 on imagenet
• Created a sparse version of ResNet50

– Trained on Imagenet 1K

– Sparsity structure trained using structural plasticity

– Training respects optimization constraints

• Accuracy results:

• FPGA implementation in process (inference only)

Network Sparsity
Accuracy 
(float32)

Accuracy 
(int8)

Quantization 

impact

MLPerf benchmark, dense 0% 76.7% 75.7% -1.00%

NVIDIA, static sparsity 50% 76.8%

Ours, static sparsity 75% 76.22% 74.67% -1.55%

Ours, dynamic sparsity 75% 77.1% 76.77% -0.33%



Point neuron

Sparsity Active dendrites Reference frames Cortical columns

ROADMAP TO MACHINE INTELLIGENCE

Performance and robustness
• Sparse activations and weights
• Structural plasticity
• Custom sparse processing logic
• 50X to 100X more efficient
• Robustness to noise

Continuous self-supervised learning
• Learn new sparse patterns 

without disrupting existing 
patterns

• Fewer training passes
• Learn from prediction errors
• Far less labeled data

Invariant representations
• Much smaller training sets
• Compositional structures
• Improved generalization

Common cortical algorithm
• Common repeating 

circuit for intelligence
• Highly scalable
• Integrated sensorimotor
• Advanced robotics

Contact:
Jeff:        jhawkins@numenta.com
Subutai: sahmad@numenta.com

Twitter: @Numenta, @SubutaiAhmad
Papers:  numenta.com/papers
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