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Lifelong-learning & Its Challenges

WHAT  IS  LIFELONG-LEARNING ?

LearningRemembering

 Tasks are learned sequentially

 Ability to recollect previously learned tasks and
continually learn new tasks is considered lifelong
learning

CHALLENGES

CATASTROPHIC 
FORGETTING

NETWORK 
CAPACITY

UNSUPERVISED 
LEARNING 

MECHANISMS

LEARNING RATE

LEARNING COST

HARDWARE 
CONSTRAINTS

 Inability to remember previously learned tasks is called
catastrophic forgetting

 Learning mechanism can be supervised, unsupervised
or reinforcement based
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Neuroevolution

Neuroevolution is the process of evolving or modifying the architecture of a neural network

 Neurogenesis is the generation of new Neurons
 Addition of NODES

 Synaptogenesis is the generation of new Synapses
 Addition of EDGES

 Neuronal Death/Termination is the removal of Neurons
 Removal of NODES

 Synapse Termination is the removal of Synapses
 Removal of EDGES
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Research Questions & Contributions

How can neuroevolution assist 
lifelong learning?

I

In the absence of a supervisor 
providing context, how does 
evolution occur?

II

Which mechanisms can aid 
information preservation?

III

New rules for neuroevolution through neurogenesis 
and synaptogenesisI

Mechanism for preserving information 
through activity trackingII

Simulated environments for evaluating lifelong 
learningIII

Library for bridging reinforcement learning algorithms 
and simulations  IV
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Reinforcement Learning
CONTEXT

The problem is defined through a 
RL context
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Reinforcement Learning Example

Spider
AGENT

Fire
NEGATIVE REWARD

Food
POSITIVE REWARD

Maze
ENVIRONMENT

FOOD
Env-1

FIRE
Env-2

FOE
Env-3

FRIEND
Env-4

Task-1 Task-2 Task-3 Task-4

LIFELONG LEARNING
SETUP
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Example Environment

Auditory, Olfactory 
and Vibratory 
Sense Zones 

based on radial 
distance from the 
agent.

Line-Of-Sight vision-
based sense vectors 

receiving distance 
from 5 points

inferring object type 
from the color of 
received point of 
contact
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Reinforcement Learning Paradigm & Algorithm

REWARDS

AGENT

ENVIRONMENT
OBSERVATIONS

ACTIONS

POSITIVE

NEGATIVE
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Relational Neurogenesis
ALGORITHM  &  ARCHITECTURE 

Structure of the RN algorithm
Overview of the architecture
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DRL Network

 Forward Pass  Activation Measurement  Input Activation Matrix [AI]

- - 0.1 0.2 0.6 0.1 - -

- - 0.1 1 0.2 0.2 - -

- 0.3 0.5 0.3 0.2 1 0.1 -

- 0.1 0.2 1 0.5 0.5 0.1 -

0 0 0.5 1 0.5 1 0 0



Relational Neurogenesis Framework

Deep 
Reinforcement 
Learning 
Network

Weights
Activations
Outputs
Score

Relative Layer Activation
Weight Change Magnitude
Average Global Activation
Relative Output Confidence
Score Gradient

Calculate 
Intermediate 
Metrics

Compare 
Threshold 
Criteria

Neurogenesis
Synaptogenesis
Neuron Pruning
Synapse Pruning
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Relational Neurogenesis
MECHANISMS 

Mechanisms and Methods 
developed to support 
Neuroevolution
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Neurogenesis Mechanisms

Plateauing 
Merit

The Merit Score is an
evaluation metric of the
agent’s performance.

The Merit Score should
keep rising as the agent
learns.

A plateauing or
descending merit score
curve is undesirable as
it shows lack or loss of
learning respectively
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Neurogenesis Mechanisms

Learning
Opposing
Concepts

Learning opposing
ideas or concepts
causes the network
weights to oscillate

The oscillation of
weights results in poor
representation

The oscillation of
weights is caused by
pulling of nodes in
opposing directions
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Neurogenesis Mechanisms

Low Margin 
of 
Confidence

The output activations
are passed through a
softmax

The resultant can be
viewed as a confidence
metric of each output

If the confidence is low
or similar between
outputs, it shows poor
class separability and
additional nodes are
needed to separate the
classes
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Simulated Environments
EVALUATION 

Virtual Environments developed in 
Unity Engine for evaluating 
Lifelong Learning
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Environment Set – A     *Spider Survival*

Before Training
Episode 1

After Training

Episode 500

Training Time

60 minutes

Environment – A1

FIRE
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Environment Set – A     *Spider Survival*
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Environment Set – B     *Forest Fire*

AGENT

Forest Environment
(top view)

 Task I
Navigating Forest Fires

 Task II
Locating Trapped Civilians

 Task III
Rescuing Civilians

 Task IV
Multi-agent cooperation
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Environment Set – B     *Forest Fire*

Trained on B1 

Successfully Navigating Forest Fires

Trained on B2

Successfully Locating Trapped Civilians
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Results
EVALUATION 

Results obtained in single task as 
well as continual learning scenarios
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Results: Single Task Performance

Network GrowthRN is compared against RL and Continual Learning Algorithms:
I. Observed to learn at an accelerated pace
II. Nearly matches SOTA performance in individual task
III. Heavy computational overheads
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Results: Continual Learning Performance

Continual Learning Performance
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What’s Next ?
CONCLUSION
FUTURE  SCOPE 

More Refined Mechanisms
Transfer Learning
Improved Environments



 Relational Neurogenesis is a combination of evolutionary algorithms and deep reinforcement learning
 It can learn continually with minimal catastrophic forgetting 
 It minimizes and optimizes network growth
 It converges (episodically) much quicker than other algorithms
 No supervisor needed for task-switching
 But Relational Neurogenesis is computationally expensive 
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Conclusion  &  Future Scope

Takeaways

 Optimize and unify diverse neuroevolutionary mechanisms
 Reduce computational overheads
 Transfer learn between virtual and real-world scenarios
 Explore extent of lifelong learning supported by expandable networks

Future Work
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Thank you for attending the talk  
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