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The end of Moore’s Law
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The New Golden Age
• The end of Dennard scaling and Moore's Law … are not problems that 

must be solved but facts that, recognized, offer breathtaking 
opportunities. 

• High-level, domain-specific languages and architectures … will usher in 
a new golden age for computer architects.

• The next decade will see a Cambrian explosion of novel computer 
architectures, meaning exciting times for computer architects in 
academia and in industry.
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Which neuromorphic architectures are suitable 
for which domains?
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Cloud Workload
(Caltech-101 as used 
for ResNet50)

Edge Workload
(NVIDIA PilotNet)
10 frames /sec

Workloads: Cloud ≠ Edge



The Edge is Different

Edge workloads involve real-time processes
• Smart devices responding to input
• User interfaces with video / audio
• Closely-coupled feedback loops

• Autonomous systems

Input data streams are continuous
• Video feeds
• Audio feeds
• Industrial sensor ensembles
• Bio signals (EEG, EKG, movement)



Characteristics of Edge Data Streams

• The data rate is much higher than the real information rate

Data rate:  2 x microphones, 16 ksamples/s at 16bits -> 512 kbits/s

Information: Human speech = 39 bits/s av.  (when speaking!)

Data rate: Always-on UXGA video – 79 MB/s

Information: Zero when no caller present
Lossless compression > 95%







Maintaining 
State is 

Expensive



Exploiting Sparsity

• Sparsity in space
• Sparsity in  time
• Sparsity in  connectivity
• Sparsity in  activation



Exploiting Sparsity

• Sparsity in space
• “Curse of dimensionality” - as data dimension grows, the proportion of 

null data points grows exponentially
• Sparsity in  time

• Real world signals have sparse changes in time
• Sparsity in  connectivity

• Compute only graph edges with significant weight (exploit “small world” 
connectivity)

• Sparsity in  activation
• Less than 40% of neurons may be activated by an upstream change



Advantages of Neuromorphic Computing
• Computational advantages are derived from:

• Spikes – minimal power per signal event, noise immunity
• Events - process only when change is occurring, time 

represents itself
• Sparsity – Natural (real?) information is sparse relative to 

dimensionality
• Asynchrony – no power consumed by clocking and clocked 

processing
• Analog signals – infinite resolution
• Stochasticity – robustness to noise, mismatch, process 

errors, probabilistic computation
• Compute-in-Network - structure as computation
• Multiscale Connectivity – at multiple scales



Coding of Numerical Input

• Biological neuroscience 
• does not use explicit representation of numerical variables
• Is robust to low precision in representation of variables

• Machine Learning 
• requires explicit use of numerical variables
• Requires significant precision at some levels of representation

• How do we encode numbers in a spiking neuromorphic system?
• Spike time or interval encoding
• Spike rate encoding
• Population encoding
• Ensemble coding
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Binary Encoding

• When we use binary digital encoding, there is little difference in power consumption between 
ensemble spike coding and conventional binary digital coding, either serial or parallel (when 
compared to other coding schemes) – a bit is a bit.

• An exception is  ensemble (spatio-temporal) coding
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Digital Neuromorphic Computing
• Computational advantages are derived from:

• Spikes – minimal power per signal event, noise immunity
• Events - process only when change is occurring, time 

represents itself
• Sparsity – Natural (real?) information is sparse relative to 

dimensionality
• Asynchrony – no power consumed by clocking and clocked 

processing
• Analog signals – infinite resolution
• Stochasticity – robustness to noise, mismatch, process 

errors, probabilistic computation
• Compute-in-Network - structure as computation
• Multiscale Connectivity – at multiple scales



GrAI Matter Labs’ NeuronFlow Architecture

• NeuronFlow
• Is an architecture for edge processing 

• Designed for multiple types of computation load
• Machine learning inference
• Digital signal processing
• Procedural computation
• Mixtures of the above

• Features
• Very low latency
• High efficiency

• Processes only changing signals, in real time (Batch << 1)
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Why NeuronFlow?

• NeuronFlow is a hybrid of Neuromorphic and Dataflow architectures

• From Neuromorphic Computation we use: 
• Event-based processing
• Data sparseness
• Compute in network

• From (Fine-grained, dynamic) Dataflow Computation we use:
• Compute on demand
• Compute in memory
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Dataflow and NN Similarities

Actor
Neuron

# inputs per construct: 1-3
# output destinations per construct: 1-2
size of data packet: 8-64 bits
Apps: Procedural computation with heavy data processing.

# inputs per construct: 100-10K
# output destinations per construct: 100-10K
size of data packet: 1-8 bits
Apps: Pattern recognition: classification...

Different parameters require different design decisions to obtain a competitive solution.

Commonalities:
• Reactivity
• Sparsity of activity

GML platform uses configurable clusters that can combine data flow or  SNN behaviour.



Architectural Features

• Neuronflow is a network of neuron clusters
• Neurons are connected by a network-on-chip (NoC)

• The neural network is packet-switched

• The neurons process 8, 16 or 32-bit data
• No spike-to-data coding problem

• All processing is event-triggered
• No scheduled processing
• No “pull” data
• Processing only happens when new data is “pushed” to the neuron
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GrAI ONE 

ACCELERATOR

[14 x 14] Array of Neuron 
Cores

Configuration GrAI One

# of Neuron Cores 196

# of Neurons up to 200,704

Technology TSMC 28 HPC+

Silicon Size 20 mm2

Package Size 8 x 8 mm2

Neuron Core - Detailed

Fully programmable / SDK
C++ / Python / TensorFlow

No external DRAM

Flexible

Self-Contained



Inside a Neuron Cluster

1. Events arrive via NoC 
based on destination 
address

2. Events are processed in 
FIFO queue

3. Weights are stored in 
local SRAM and can be 
shared.  Data is weighted 
and passed to neurons

4. Neurons have state in 
local SRAM and perform 
basic neural and ALU 
functions

5. Events and mathematical 
output values are sent to 
destinations via synapse 
table and NoC
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Top-level view

Accelerator 
consists of a 
fabric of 
cores, each of 
which 
represents 
1024 
neurons.
Cores are 
connected by 
a proprietary 
NoC.

System level
• Basic interfaces

• Power, clock, reset, JTAG
• AVR – some more details



PilotNet* on GrAI One
End-to-end learning system for self-driving cars 

AUTONOMOUS 

NAVIGATION

Low latency low power
path planning
& steering control
in dynamic environments.

Utilization
< 200,000 neurons

Latency

< 20 µs
[< 10,000 cycles @ 500MHz]

Power  [dynamic]

< 10 mW
[< 1mJ / frame @ 10 fps]

*  https://arxiv.org/pdf/1704.07911.pdf, adapted for implementation on GrAI One L



Low latency low power 
understanding of human 
speech and gestures.

Use Case
32 Keywords
16kHz + 512-FFT
RNN 40/64/32

Latency

< 3 µs

Power [dynamic]

< 10 mW

COGNITIVE

VOICE & VIDEO

ASSISTANT

Keyword Spotting + Hand Gesture 
Recognition on GrAI One

Use Case
10 Gestures
“SparseNet’
> 90% accuracy

Latency

< 1 µs

Power [dynamic]

< 25 mW



POWER AND PERFORMANCE



User Application

Network API
- Tensorflow -

Neuron API
Python/C++

Compute API
- Python/C++

Mapper

Functional Simulator Code Generation

Runtime Support

Compile
Time

Run
Time

GrAIFLOW

SDK

Conventional Programming
& Machine Learning
Direct Network Import
Integrated Simulator
Graphical Editor

Key Features



RNN

IN GRAIFLOW

Browse through
hierarchies of
RNN model

Graphical Editor
for RNN 
programming
and simulation

Jupyter
Notebook
with RNN
template



Conclusions

• Current computational technology has plateaued; but a “Cambrian 
explosion” in computing architectures requires us to recognize that 
architectures should be domain-specific
• Neuromorphic architectures may be particularly well-suited to edge 

workloads in which data are real-time, highly correlated and sparse, 
and we can use Batch << 1 processing
• GrAI Matter LABS’ NeuronFlow is an architecture which has been 

optimized for these workloads, using a selection of neuromorphic 
principles



Thanks!


