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Limitations of current technology:
The end of Moore’s Law

Moore’s Law vs. Intel Microprocessor Density
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The End of Dennard Scaling
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The End of Amdahls’ Law
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The End of the Line

End of the Line = 2X/20 years (3%/yr)

Amdahl’s Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) 1
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The New Golden Age

* The end of Dennard scaling and Moore's Law ... are not problems that
must be solved but facts that, recognized, offer breathtaking
opportunities.

* High-level, domain-specific languages and architectures ... will usher in
a new golden age for computer architects.

* The next decade will see a Cambrian explosion of novel computer
architectures, meaning exciting times for computer architects in
academia and in industry.

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60



The New Golden Age

* The end of Dennard scaling and Moore's Law ... are not problems that
must be solved but facts that, recognized, offer breathtaking
opportunities.

domain-specific Janguages and architectures ... will usher in

a new goldeMame wrputer architects.

* The next decade will see a Cambrian explosion of novel computer
architectures, meaning exciting times for computer architects in
academia and in industry.

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60



The New Golden Age

Which neuromorphic architectures are suitable
for which domains?




Workloads: Cloud # Edge

Cloud Workload b Correlation = 0.027 ' Correlation = 0.085 J
(Caltech-101 as used Unchanged pixels: 0.2% Unchanged pixels: 0.3%
for ResNet50) Pixels A < 0.05: 5.0% Pixels A <0.05: 8.0%

Correlation = 0.98 J ‘ Correlation = 0.96 J
Edge ‘N_?rkload b Unchanged pixels: 64% Unchanged pixels: 64%
(NVIDIA PilotNet) Pixels A < 0.05: 87% Pixels A < 0.05: 86%
10 frames /sec



The Edge is Different

Edge workloads involve real-time processes
* Smart devices responding to input
* User interfaces with video / audio

e Closely-coupled feedback loops
* Autonomous systems

Input data streams are continuous
* Video feeds
* Audio feeds
* Industrial sensor ensembles
* Bio signals (EEG, EKG, movement)



Characteristics of Edge Data Streams
* The data rate is much higher than the real information rate
Data rate: 2 x microphones, 16 ksamples/s at 16bits -> 512 kbits/s

Information: Human speech = 39 bits/s av. (when speaking!)

Data rate: Always-on UXGA video — 79 MB/s

Information: Zero when no caller present
Lossless compression > 95%
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Exploiting Sparsity

* Sparsity in space
* Sparsity in time
* Sparsity in connectivity

* Sparsity in activation



Exploiting Sparsity

* Sparsity in space

» “Curse of dimensionality” - as data dimension grows, the proportion of
null data points grows exponentially

* Sparsity in time
» Real world signals have sparse changes in time
* Sparsity in connectivity

« Compute only graph edges with significant weight (exploit “small world”
connectivity)

* Sparsity in activation
» Less than 40% of neurons may be activated by an upstream change



Advantages of Neuromorphic Computing

 Computational advantages are derived from:

e Spikes — minimal power per signal event, noise immunity

e Events - process only when change is occurring, time
represents itself

» Sparsity — Natural (real?) information is sparse relative to
dimensionality

* Asynchrony — no power consumed by clocking and clocked
processing

* Analog signals — infinite resolution

* Stochasticity — robustness to noise, mismatch, process
errors, probabilistic computation

* Compute-in-Network - structure as computation
* Multiscale Connectivity — at multiple scales



Coding of Numerical Input

* Biological neuroscience
» does not use explicit representation of numerical variables
* |s robust to low precision in representation of variables

* Machine Learning
* requires explicit use of numerical variables
* Requires significant precision at some levels of representation

* How do we encode numbers in a spiking neuromorphic system?
e Spike time or interval encoding
* Spike rate encoding
* Population encoding
* Ensemble coding



Binary Encoding

 When we use binary digital encoding, there is little difference in power consumption between
ensemble spike coding and conventional binary digital coding, either serial or parallel (when
compared to other coding schemes) — a bit is a bit.
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Binary Encoding

* When we use binary digital encoding, there is little difference in power consumption between
ensemble spike coding and conventional binary digital coding, either serial or parallel (when
compared to other coding schemes) — a bit is a bit.
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Digital Neuromorphic Computing

 Computational advantages are derived from:
ol ieal ol oise .

e Events - process only when change is occurring, time
represents itself

» Sparsity — Natural (real?) information is sparse relative to
dimensionality
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* Compute-in-Network - structure as computation
* Multiscale Connectivity — at multiple scales



GrAl Matter Labs’ NeuronFlow Architecture

* NeuronFlow
* |s an architecture for edge processing

* Designed for multiple types of computation load
Machine learning inference

Digital signal processing

Procedural computation

Mixtures of the above

* Features
e Very low latency
* High efficiency

* Processes only changing signals, in real time (Batch << 1)



Why NeuronFlow?

* NeuronFlow is a hybrid of Neuromorphic and Dataflow architectures

* From Neuromorphic Computation we use:

e Event-based processing
* Data sparseness
e Compute in network

* From (Fine-grained, dynamic) Dataflow Computation we use:
e Compute on demand
* Compute in memory



Dataflow and NN Similarities

Commonalities:
* Reactivity
* Sparsity of activity

# inputs per construct: 1-3 # inputs per construct: 100-10K

# output destinations per construct: 1-2 # output destinations per construct: 100-10K
size of data packet: 8-64 bits size of data packet: 1-8 bits

Apps: Procedural computation with heavy data processing. Apps: Pattern recognition: classification...

Different parameters require different design decisions to obtain a competitive solution.

GML platform uses configurable clusters that can combine data flow or SNN behaviour.




Architectural Features

Neuronflow is a network of neuron clusters

Neurons are connected by a network-on-chip (NoC)
* The neural network is packet-switched

The neurons process 8, 16 or 32-bit data
* No spike-to-data coding problem

All processing is event-triggered
* No scheduled processing
* No “pull” data
* Processing only happens when new data is “pushed” to the neuron



Neuron Core - Detailed

Configuration GrAl One
GrAl ONE | contguration __Gralone

.Svtb1024x24 # of Neuron Cores 196
..5vtb1024x31
ACC E L E RATO R » | # of Neurons up to 200,704
=] U28K12 Technology TSMC 28 HPC+
Silicon Size 20 mm2
Package Size 8 x 8 mm2

Fully programmable / SDK
C++/ Python / TensorFlow

No external DRAM
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Inside a Neuron Cluster

1. Events arrive via NoC
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Top-level view
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AUTONOMOUS
NAVIGATION

Low latency low power

path planning

& steering control
in dynamic environments.

PilotNet* on GrAl One

End-to-end learning system for self-driving cars

Utilization
< 200,000 neurons

Latency

<20 pus

[< 10,000 cycles @ 500MHz]
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[<1mJ / frame @ 10 fps]

?

?; 3x3 kernel

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
84@1x18

C

3x3 kernel

S 55 kemel

or
fealure map
64@3%20

Convolutional
feature map
48@5x22

C

or
feature map
38@14x47

Convolutional
feature map
24@31x98

Normalized
input planes

3@66x200

Input planes
3@66x200



COGNITIVE
VOICE & VIDEO

ASSISTANT

Low latency low power
understanding of human
speech and gestures.

Keyword Spotting + Hand Gesture
Recognition on GrAl One

Use Case

32 Keywords
16kHz + 512-FFT
RNN 40/64/32

Latency

<3 us

Power [dynamic]

<10 mW

Use Case

10 Gestures
“SparseNet’

> 90% accuracy

Latency

<1us

Power [dynamic]

<25 mW



POWER AND PERFORMANCE
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GrAIFLOW User Application
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Browse through
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Now suppose that we want to convert that Keras RNN into a network ti
(for instance as part of a smart listening device).

To do so, we will design a couple of functions using the gfgraph API, thall = g
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step 1: gfgraph library and guidelines

In [5]: Iimport gfgraph as gfg

Gfgraph is the low-level API that deals with creating neurons, synapses and networks aggregated into a single .gfgraph protobuffed topology that can later
be simulated using a provided set of inputs.

In this notebook, we try and provide you with some good practices and intuitions regarding coding styles and design patterns when using the gfgraph
API. This is only indicative though , so feel free to experiment on your own! In the code here we impose ourselves the following rules:

+ we will design a couple of
template:

that are i to creation. Such functions actually return functions themselves, following the
In [ ]: def my function(**kwargs):

My function is not directly applied on input data, it returns a functor that does.
The functor is parametrized using my_function kwargs




Conclusions

e Current computational technology has plateaued; but a “Cambrian
explosion” in computing architectures requires us to recognize that
architectures should be domain-specific

* Neuromorphic architectures may be particularly well-suited to edge
workloads in which data are real-time, highly correlated and sparse,
and we can use Batch << 1 processing

* GrAl Matter LABS’ NeuronFlow is an architecture which has been
optimized for these workloads, using a selection of neuromorphic
principles



Thanks!



