Batch << 1: Why Neuromorphic
Computing Architectures Suit
Real-Time Workloads

Jonathan Tapson
University of Technology Sydney
CSO, GrAl Matter Labs 2018-2020

Limitations of current technology:
The end of Moore’s Law

Moore’s Law vs. Intel Microprocessor Density

@® Moore's Law (1975 version) @ Density
10,000,000

1,000,000
100,000
10,000
1,000

100

10

1980 1990 2000 2010

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60

The End of Dennard Scaling

Nanometers

200
180
160
140
120

100 ;

80
60
40
20

0

N\
AN

~—

—=— Technology (nm)

\~

—eo— Power/nm?

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60

4

[&2

3

[2.5

2

- 1.5

1

- 0.5

0

Relative Power per nm?

The End of Amdahls’ Law

i 5 9 183 Ir 21 25 29 33 37 41 45 49 53 57 61 65

Processor Count

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60

The End of the Line

End of the Line = 2X/20 years (3%/yr)

Amdahl’s Law = 2X/6 years (12%/year)
End of Dennard Scaling = Multicore 2X/3.5 years (23%/year) 1

y CISC 2X/2.5 years ? RISC 2X/1.5 years
(22%/year) (52%/year)
100,000
2
~ 10,000
g
= 1,000
v
>
@
g 100
©
£
e
7 10
o

1980 1985 1990 1995 2000 2005 2010 2015

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60

The New Golden Age

* The end of Dennard scaling and Moore's Law ... are not problems that
must be solved but facts that, recognized, offer breathtaking
opportunities.

* High-level, domain-specific languages and architectures ... will usher in
a new golden age for computer architects.

* The next decade will see a Cambrian explosion of novel computer
architectures, meaning exciting times for computer architects in
academia and in industry.

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60

The New Golden Age

* The end of Dennard scaling and Moore's Law ... are not problems that
must be solved but facts that, recognized, offer breathtaking
opportunities.

domain-specific Janguages and architectures ... will usher in

a new goldeMame wrputer architects.

* The next decade will see a Cambrian explosion of novel computer
architectures, meaning exciting times for computer architects in
academia and in industry.

A New Golden Age for Computer Architecture
By John L. Hennessy, David A. Patterson
Communications of the ACM, February 2019, Vol. 62 No. 2, Pages 48-60

The New Golden Age

Which neuromorphic architectures are suitable
for which domains?

Workloads: Cloud # Edge

Cloud Workload b Correlation = 0.027 ' Correlation = 0.085 J
(Caltech-101 as used Unchanged pixels: 0.2% Unchanged pixels: 0.3%
for ResNet50) Pixels A < 0.05: 5.0% Pixels A <0.05: 8.0%

Correlation = 0.98 J ‘ Correlation = 0.96 J
Edge ‘N_?rkload b Unchanged pixels: 64% Unchanged pixels: 64%
(NVIDIA PilotNet) Pixels A < 0.05: 87% Pixels A < 0.05: 86%
10 frames /sec

The Edge is Different

Edge workloads involve real-time processes
* Smart devices responding to input
* User interfaces with video / audio

e Closely-coupled feedback loops
* Autonomous systems

Input data streams are continuous
* Video feeds
* Audio feeds
* Industrial sensor ensembles
* Bio signals (EEG, EKG, movement)

Characteristics of Edge Data Streams
* The data rate is much higher than the real information rate
Data rate: 2 x microphones, 16 ksamples/s at 16bits -> 512 kbits/s

Information: Human speech = 39 bits/s av. (when speaking!)

Data rate: Always-on UXGA video — 79 MB/s

Information: Zero when no caller present
Lossless compression > 95%

New data frame

conventional CNN

Maintaining
State Is
Expensive

Delta input layer

Stored reference frame I c1 del
Eoot feature Iai: &l
layer P P1 pooling
. " v (one of)
Sparsity—exploiting CNN

delta P1
layer

' G
¢

Bl
Stored Stored
reference reference
feature

pooling

maps / layers

Exploiting Sparsity

* Sparsity in space
* Sparsity in time
* Sparsity in connectivity

* Sparsity in activation

Exploiting Sparsity

* Sparsity in space

» “Curse of dimensionality” - as data dimension grows, the proportion of
null data points grows exponentially

* Sparsity in time
» Real world signals have sparse changes in time
* Sparsity in connectivity

« Compute only graph edges with significant weight (exploit “small world”
connectivity)

* Sparsity in activation
» Less than 40% of neurons may be activated by an upstream change

Advantages of Neuromorphic Computing

 Computational advantages are derived from:

e Spikes — minimal power per signal event, noise immunity

e Events - process only when change is occurring, time
represents itself

» Sparsity — Natural (real?) information is sparse relative to
dimensionality

* Asynchrony — no power consumed by clocking and clocked
processing

* Analog signals — infinite resolution

* Stochasticity — robustness to noise, mismatch, process
errors, probabilistic computation

* Compute-in-Network - structure as computation
* Multiscale Connectivity — at multiple scales

Coding of Numerical Input

* Biological neuroscience
» does not use explicit representation of numerical variables
* |s robust to low precision in representation of variables

* Machine Learning
* requires explicit use of numerical variables
* Requires significant precision at some levels of representation

* How do we encode numbers in a spiking neuromorphic system?
e Spike time or interval encoding
* Spike rate encoding
* Population encoding
* Ensemble coding

Binary Encoding

 When we use binary digital encoding, there is little difference in power consumption between
ensemble spike coding and conventional binary digital coding, either serial or parallel (when
compared to other coding schemes) — a bit is a bit.

signal . signal signal

T € time T g time T & time
»
>

1 21 - g n m__mMn
space I space '_ space
: I 1 7L|
I —

K 10110 01101 K 10110 01101 K 10110 01101

* An exception is ensemble (spatio-temporal) coding T“g”a' time
space
|
¥

10110 01101

19

Binary Encoding

* When we use binary digital encoding, there is little difference in power consumption between
ensemble spike coding and conventional binary digital coding, either serial or parallel (when
compared to other coding schemes) — a bit is a bit.

Space I Space Space

40139|38|37|36(35|34(33|32|31(30]|29|28|27]|26(25|24]|23[22]21|20 17 16]115|14)13|12|11j10{9|8|7|6|5[4]|3|(2[1]0

nid_sign pattern_id Value_short

Cluster_ID_ | Cluster_ID_
Y (4b) X (4b)
[Signed] [Signed]

10110 01101

20

Digital Neuromorphic Computing

 Computational advantages are derived from:
ol ieal ol oise .

e Events - process only when change is occurring, time
represents itself

» Sparsity — Natural (real?) information is sparse relative to
dimensionality

sAsynchrony —nopowercensumed-by-clockingand-clocked

processing
Anal . s infini gt
. . ise_rmi ’
toc E’”EIF'I.I.EE:EE =55t .EEE >FRGERPFrOCEss

* Compute-in-Network - structure as computation
* Multiscale Connectivity — at multiple scales

GrAl Matter Labs’ NeuronFlow Architecture

* NeuronFlow
* |s an architecture for edge processing

* Designed for multiple types of computation load
Machine learning inference

Digital signal processing

Procedural computation

Mixtures of the above

* Features
e Very low latency
* High efficiency

* Processes only changing signals, in real time (Batch << 1)

Why NeuronFlow?

* NeuronFlow is a hybrid of Neuromorphic and Dataflow architectures

* From Neuromorphic Computation we use:

e Event-based processing
* Data sparseness
e Compute in network

* From (Fine-grained, dynamic) Dataflow Computation we use:
e Compute on demand
* Compute in memory

Dataflow and NN Similarities

Commonalities:
* Reactivity
* Sparsity of activity

inputs per construct: 1-3 # inputs per construct: 100-10K

output destinations per construct: 1-2 # output destinations per construct: 100-10K
size of data packet: 8-64 bits size of data packet: 1-8 bits

Apps: Procedural computation with heavy data processing. Apps: Pattern recognition: classification...

Different parameters require different design decisions to obtain a competitive solution.

GML platform uses configurable clusters that can combine data flow or SNN behaviour.

Architectural Features

Neuronflow is a network of neuron clusters

Neurons are connected by a network-on-chip (NoC)
* The neural network is packet-switched

The neurons process 8, 16 or 32-bit data
* No spike-to-data coding problem

All processing is event-triggered
* No scheduled processing
* No “pull” data
* Processing only happens when new data is “pushed” to the neuron

Neuron Core - Detailed

Configuration GrAl One
GrAl ONE | contguration __Gralone

.Svtb1024x24 # of Neuron Cores 196
..5vtb1024x31
ACC E L E RATO R » | # of Neurons up to 200,704
=] U28K12 Technology TSMC 28 HPC+
Silicon Size 20 mm2
Package Size 8 x 8 mm2

Fully programmable / SDK
C++/ Python / TensorFlow

No external DRAM

[I R R

LI X IR Y B¥ IRF Y ES¥ IRNY JNY IRR ¥ Y Y B

LA e S S A B A 44191440 e e

[14 x 14] Array of Neuron
Cores

CES 2020

10

Inside a Neuron Cluster

1. Events arrive via NoC

based on dest|nat|on Evenrs — Network on Chip (NoC) A <—1—— Events
address Q
2. EventS are prOCESSEd |n 3 Neuron Cluste
FIFO queue Ll T
3. Weights are stored in e
local SRAM an_d can be O -
shared. Dgta is weighted — | ©
and passed to neurons v N
p . Multiply by weights %
4. Neurons have state in éomsmuster > Newon
local SRAM and perform > Neuron
basic-neural and ALU > Neuron
functions

5. Events and mathematical
output values are sent to
destinations via synapse
table and NoC

Top-level view

VDD VDDA VDDPST

[T 1

ITAG — W <“—>» AR

Reset —» GrAlOne

Clock N L » Clock

VSS VSSA VSSPST
System level
* Basic interfaces
* Power, clock, reset, JTAG

* AVR -some more details *.

o
8 5 % w >

8 80 ol % 2 2 3
s s S o5 o Q 3

vv4 A4 v Yy v

GPIO AVR In GPIO AVR Out 2 o
AIERIE
Avy va4a allalld
(1] (1] 8
AVR Synchronization o ® >
=l[egf|]=

EEREX Ak

v v

Neuron
Cluster
Matrix

Accelerator
consists of a
fabric of
cores, each of
which
represents
1024
neurons.
Cores are
connected by
a proprietary
NoC.

AUTONOMOUS
NAVIGATION

Low latency low power

path planning

& steering control
in dynamic environments.

PilotNet* on GrAl One

End-to-end learning system for self-driving cars

Utilization
< 200,000 neurons

Latency

<20 pus

[< 10,000 cycles @ 500MHz]

Power [dynamic]

<10 mW

[<1mJ / frame @ 10 fps]

?

?; 3x3 kernel

Output: vehicle control

Fully-connected layer
Fully-connected layer
Fully-connected layer

Convolutional
feature map
84@1x18

C

3x3 kernel

S 55 kemel

or
fealure map
64@3%20

Convolutional
feature map
48@5x22

C

or
feature map
38@14x47

Convolutional
feature map
24@31x98

Normalized
input planes

3@66x200

Input planes
3@66x200

COGNITIVE
VOICE & VIDEO

ASSISTANT

Low latency low power
understanding of human
speech and gestures.

Keyword Spotting + Hand Gesture
Recognition on GrAl One

Use Case

32 Keywords
16kHz + 512-FFT
RNN 40/64/32

Latency

<3 us

Power [dynamic]

<10 mW

Use Case

10 Gestures
“SparseNet’

> 90% accuracy

Latency

<1us

Power [dynamic]

<25 mW

POWER AND PERFORMANCE

Power [mW]

1,000.00

100.00

10.00

GrAlOne Power Consumption

500 MRz fimtt

1 MHZ \init

25mw

0.6 0.7 0.8 0.9
Supply Voltage

GrAIFLOW User Application
Network API

Compute API
< =
o - Tensorflow - 'z‘ c - Python/C++ l

Neuron API
@ C Python/C++

Conventional Programming Mapper
& Machine Learning
Direct Network Import
Integrated Simulator
Graphical Editor

Functional Simulator Code Generation Cor_nrpile
ime

Runtime Support Run
Time

Browse through
hierarchies of
RNN model

) -
e

@

Graphical Editor
for RNN

RNN

B

Prject £dz Netuork View

2 i H] 4 2o e

Newproject Load proect Export0Cam! Giokalvariables Network nput Run

IN GRAIFLOW

programming
and simulation

twp X | model2 X

[

@

u1
Fasesaeeg

Newron brary | Neuro st | it history

[[s[>

B o

: ﬂ

: Jupyter RNN_Sample_application Last Checkpoint: a minute ago (autosay

&
m

File Edit View Insert Cell Kernel Widgets Help
+ % @ B A ¥ MR B C W Makdown v o= 5 [
3- Converting the RNN to a gfgraph L

Jupyter
Notebook
with RNN

template

Now suppose that we want to convert that Keras RNN into a network ti
(for instance as part of a smart listening device).

To do so, we will design a couple of functions using the gfgraph API, thall = g
Frme e

e T

e e el el ol s

R

[versese | nio

step 1: gfgraph library and guidelines

In [5]: Iimport gfgraph as gfg

Gfgraph is the low-level API that deals with creating neurons, synapses and networks aggregated into a single .gfgraph protobuffed topology that can later
be simulated using a provided set of inputs.

In this notebook, we try and provide you with some good practices and intuitions regarding coding styles and design patterns when using the gfgraph
API. This is only indicative though , so feel free to experiment on your own! In the code here we impose ourselves the following rules:

+ we will design a couple of
template:

that are i to creation. Such functions actually return functions themselves, following the
In []: def my function(**kwargs):

My function is not directly applied on input data, it returns a functor that does.
The functor is parametrized using my_function kwargs

Conclusions

e Current computational technology has plateaued; but a “Cambrian
explosion” in computing architectures requires us to recognize that
architectures should be domain-specific

* Neuromorphic architectures may be particularly well-suited to edge
workloads in which data are real-time, highly correlated and sparse,
and we can use Batch << 1 processing

* GrAl Matter LABS’ NeuronFlow is an architecture which has been
optimized for these workloads, using a selection of neuromorphic
principles

Thanks!

