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Architectural Comparison

* Neural accelerators & neuromorphic approaches ate
emerging at different scales, resource requirements,
and enabling capabilities

* Beyond the similarity of executing neural network
workloads, these two paradigms exhibit significant
differences

* As processing, memory, and communication are the
core tenets of computing, here we compare
architectures of neural accelerators and
neuromorphic in these terms
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3 I Operations

There has been a trend of measuring “better” by the amount of operations
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Operations

Operation counts alone can be misleading

* In neural networks do not guarantee how accurate your answer will be

* Do not measure how fast your problem will be solved
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Operations

Emphasis on operation counts has impacted some architectural design choices

* Which furthermore impacts algorithm design choices

* Easy to follow the mindset of more
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Stack of Input Data
6 Dataflow
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* Dataflow architecture executes computations as data is received —
* Ideologically similar to neural network computation flow

* Broadly encompasses input data, intermediate computation data, as

) - Neural Network Weights
well as parameter data such as weights and biases

* A datatlow then describes how these various components are
moved around 1n an architecture to perform computation

* Importantly this matters because data movement from memory access
requires more energy than performing computation

Hardware mapping
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* Central to the analysis of how dataflows can bridge computational N .
workflows and architectural execution through the most efficient (%)
data movement are the assumptions that data must be moved & [ ]
that there are limited resources which are being scheduled
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Roofline Model

A rooftline model articulates the performance
of the interplay between memory and
processing for a computational architecture

* Traditionally, the ridge point targets the minimum
intensity needed to attain maximum performance

However, we argue alternative computing
paradigms can alter the intuition and structure
of the roofline model

* While the target traditionally is to optimize
towards the ridgepoint, it is possible to be either
computer bound or memory bound for neural
network computation and still be advantageous
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Computational Objectives

Quantitatively assessing aspects of computer architectures has provided an analytical
means of exploring the impact of various design choices

* Comparing classes of architectures has often relied upon optimizing a shared objective
despite pursuing different approaches

Comparing neural accelerators and neuromorphic architectures is not as straightforward

* Neural accelerators share design goals of the more traditional computational architectures but
focus upon enabling the execution of neural network workloads

* Conversely, neuromorphic approaches strive to enable neural computation but do so by
employing design principles of how brains function
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Computational Objectives

Instead of assuming more operations is better, neuromorphic event-driven computation
explores what is the minimum compute needed

* Analogous to the minimax decision rule from game theory which strives to minimize a maximum
cost

* In this context - minimizing the amount of computation needed bounds the maximum cost of
computation

This 1s a fundamentally different paradigm than the converse, maximin which aspires to
maximize a minimum gain

°In this context - the objectivg 1S tO maximize th¢ amount of computation performed to advance the
minimal amount of computational progress attained

» The best decision is not the same for these two paradigms as they are optimizing for different
objectives
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As we look to the brain for computing inspiration -

* We know from neuroscience that neuron counts alone are an insufficient measure of
cognitive ability
* For example, the human brain has approximately 86 billion neurons compared with larger brains in
elephants consisting of approximately 250 billion neurons

* Cognitive abilities in biological brains are dependent upon many factors including size, connectivity,
surface area, quantity of neurons, support cells, etc.

- Understand the analytical alure to relate architectures based upon operations — BUT novel
approaches require understanding their unique benetfits

* While the dominant motivational analogy 1s to compare brains with the power consumption
of an ever more efficient lightbulb

* We should also remember not every neuron fires all the time & aspire to pursue computations not
operations
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