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Architectural Comparison 

• Neural accelerators & neuromorphic approaches are 
emerging at different scales, resource requirements, 
and enabling capabilities

• Beyond the similarity of  executing neural network 
workloads, these two paradigms exhibit significant 
differences

• As processing, memory, and communication are the 
core tenets of  computing, here we compare 
architectures of  neural accelerators and 
neuromorphic in these terms
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Operations

There has been a trend of  measuring “better” by the amount of  operations

https://www.top500.org/statistics/perfdevel/
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Operations

Operation counts alone can be misleading 

• In neural networks do not guarantee how accurate your answer will be 

• Do not measure how fast your problem will be solved 
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Operations

Emphasis on operation counts has impacted some architectural design choices

• Which furthermore impacts algorithm design choices

• Easy to follow the mindset of more  
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Dataflow

• Dataflow architecture executes computations as data is received
• Ideologically similar to neural network computation flow

• Broadly encompasses input data, intermediate computation data, as 
well as parameter data such as weights and biases

• A dataflow then describes how these various components are 
moved around in an architecture to perform computation
• Importantly this matters because data movement from memory access 

requires more energy than performing computation

• Central to the analysis of  how dataflows can bridge computational 
workflows and architectural execution through the most efficient 
data movement are the assumptions that data must be moved & 
that there are limited resources which are being scheduled

6



Roofline Model

A roofline model articulates the performance 
of  the interplay between memory and 
processing for a computational architecture

• Traditionally, the ridge point targets the minimum 
intensity needed to attain maximum performance 

However, we argue alternative computing 
paradigms can alter the intuition and structure 
of  the roofline model

• While the target traditionally is to optimize 
towards the ridgepoint, it is possible to be either 
computer bound or memory bound for neural 
network computation and still be advantageous
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Computational Objectives 

Quantitatively assessing aspects of  computer architectures has provided an analytical 
means of  exploring the impact of  various design choices

• Comparing classes of  architectures has often relied upon optimizing a shared objective
despite pursuing different approaches

Comparing neural accelerators and neuromorphic architectures is not as straightforward 

• Neural accelerators share design goals of  the more traditional computational architectures but 
focus upon enabling the execution of  neural network workloads

• Conversely, neuromorphic approaches strive to enable neural computation but do so by 
employing design principles of  how brains function
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Computational Objectives 

Instead of  assuming more operations is better, neuromorphic event-driven computation
explores what is the minimum compute needed 

• Analogous to the minimax decision rule from game theory which strives to minimize a maximum 
cost

• In this context - minimizing the amount of  computation needed bounds the maximum cost of  
computation

This is a fundamentally different paradigm than the converse, maximin which aspires to 
maximize a minimum gain

• In this context - the objective is to maximize the amount of  computation performed to advance the 
minimal amount of  computational progress attained

➢ The best decision is not the same for these two paradigms as they are optimizing for different 
objectives
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Conclusions 

As we look to the brain for computing inspiration -

• We know from neuroscience that neuron counts alone are an insufficient measure of  
cognitive ability
• For example, the human brain has approximately 86 billion neurons compared with larger brains in 

elephants consisting of  approximately 250 billion neurons

• Cognitive abilities in biological brains are dependent upon many factors including size, connectivity, 
surface area, quantity of  neurons, support cells, etc.

• Understand the analytical alure to relate architectures based upon operations – BUT novel 
approaches require understanding their unique benefits 

• While the dominant motivational analogy is to compare brains with the power consumption 
of  an ever more efficient lightbulb 
• We should also remember not every neuron fires all the time & aspire to pursue computations not 

operations  
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Thank you

Questions? 


