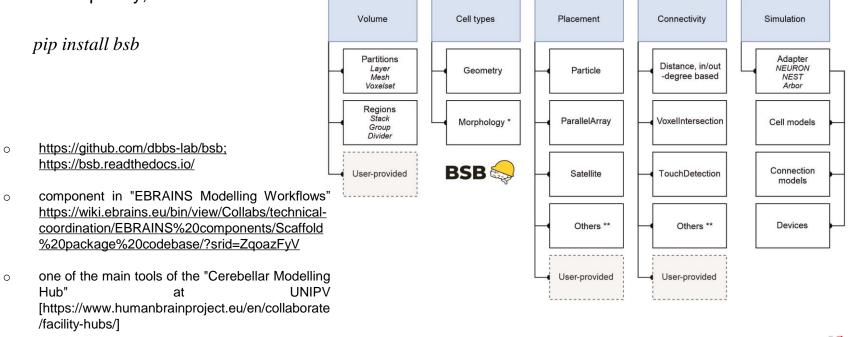

BSB design and usecases

Claudia Casellato

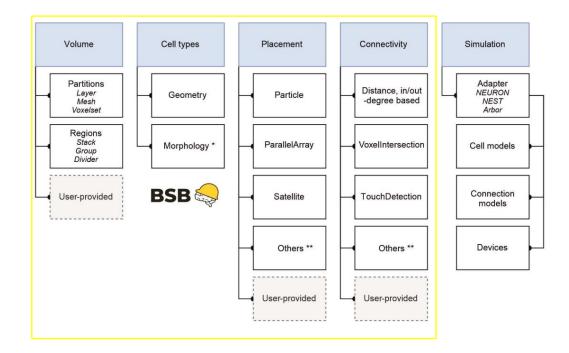
Dept. of Brain and Behavioral Sciences - University of Pavia



Human Brain Project

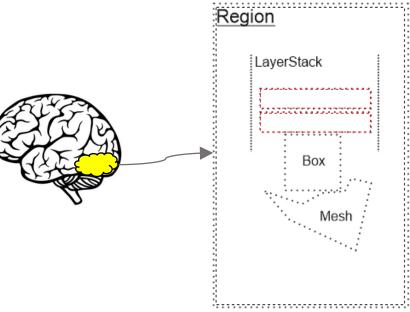
Network reconstruction and simulation

the **Brain Scaffold Builder**, a flexible software package to build and simulate brain models at different levels of complexity, constrained on data


Cerebellar usecase: *De Schepper et al.,* <u>https://www.biorxiv.org/content/10.1101/2021.07.</u> <u>30.454314v1</u>

0

CSCS Centro Svizzero di Calcolo Scientifico Swiss National Supercomputing Centre


Network reconstruction

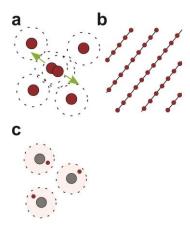

```
Volume
       },
       "network architecture": {
         "simulation volume x": 300.0,
         "simulation volume z": 200.0,
         "store kd trees": true,
         "store compound kd tree": true,
         "store pf kd trees": true
       },
       "layers": {
         "granular layer": {
           "thickness": 130.0,
           "stack": {
             "stack id": 0,
             "position in stack": 0,
             "position": [0.0, 0.0, 0.0]
         "purkinje layer": {
           "thickness": 15.0,
           "stack": {
             "stack id": 0,
             "position in stack": 1
         "molecular layer": {
           "thickness": 150.0,
           "stack": {
             "stack id": 0,
             "position in stack": 2
       },
```

[µm] x	[µm] z	[µm] y	[µm³]
300	200	295	17700000

x-y (sagittal plane), *x-z* (horizontal plane), *z-y* (coronal plane), *z*-axis (major lamellar axis, along which parallel fibers elongate)

Cell types

```
"cell types": {
  "granule cell": {
    "placement": {
     "class": "bsb.placement.ParticlePlacement",
      "layer": "granular layer",
      "soma radius": 2.5,
      "density": 3.9e-3
   },
    "morphology": {
      "class": "bsb.morphologies.NoGeometry",
      "dendrite length": 40,
      "detailed morphologies": {
        "names": ["GranuleCell"]
                                                11
      }
   },
                                                  },
                                                  },
```


```
},
"purkinje_cell": {
    "placement": {
        "class": "bsb.placement.ParallelArrayPlacement",
        "layer": "purkinje_layer",
        "soma_radius": 7.5,
        "planar_density": 0.0017,
        "extension_x": 130.0,
        "extension_z": 3.5,
        "angle": 70
}
```

```
"morphology": {
    "class": "bsb.morphologies.NoGeometry",
    "detailed_morphologies": {
        "names": ["PurkinjeCell"]
    }
}
```

Placement

Neuron densitiesNeuron geometry

"placement": {
 "fill_base_layer": {
 "cls": "bsb.placement.ParticlePlacement",
 "cell_types": ["cell_type_A", "cell_type_B"],
 "partitions": ["base_layer"]
 },
 "load_atlas": {
 "cls": "bsb.placement.atlas.NRRD",
 "cell_types": ["cell_type_C"],
 "partitions": ["nucleus_voxelset", "deep_nucleus_voxelset"]
 }
}

Particle Placement algorithm for all cell types except for PCs (random placement, collisions/replacement, pruning)

Planar arrays placement algorithm for PCs

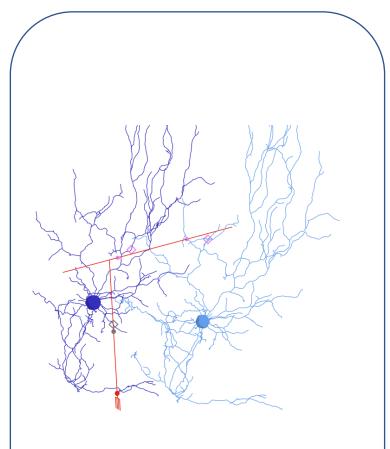
	N	
mossy fibers	117	
glomeruli	2336	
granule cells	28615	
golgi cells	70	
purkinje cells	99	
basket cells	147	
stellate cells	299	
tot cells	29230	
tot entities/relays	2453	
TOT elements	31683	

Ito et al., 1984

network_scene.html

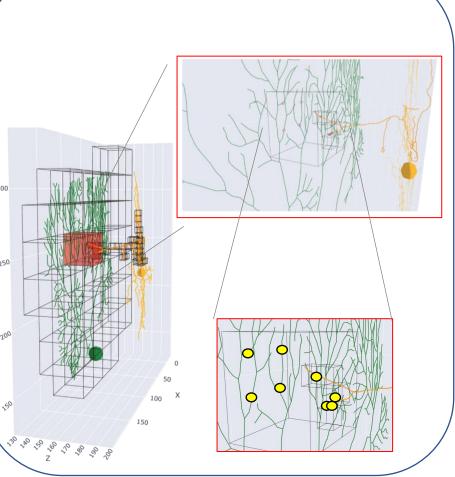
Connectivity

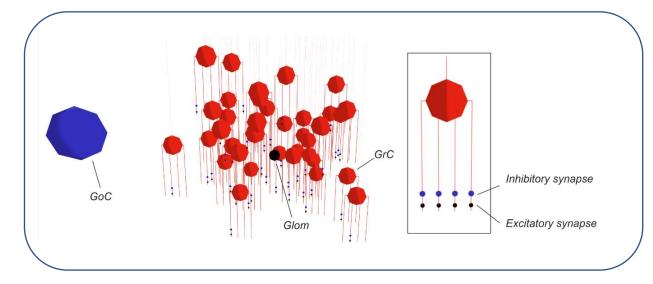
d


P(d)·P(I)·P(O)

"B_to_C": {
 "cls": "bsb.connectivity.TouchDetection",
 "from_type": "cell_type_B",
 "to_type": "cell_type_C",
 "intersection_radius": 2.0

},


```
"A_to_C": {
    "cls": "bsb.connectivity.VoxelIntersection",
    "from_type": "cell_type_A",
    "to_type": "cell_type_C",
    "synapses": {
        "type": "norm",
        "loc": 4,
        "scale": 0.4
    }
}
```

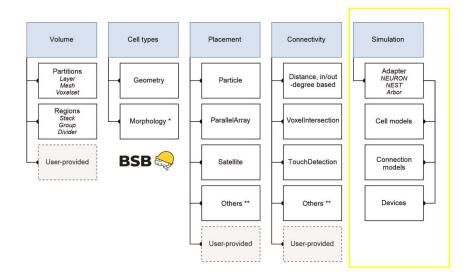


grc_golgi_touch_v2.html

Connectivity

```
"connectivity": {
 "A_to_B": {
   "cls": "bsb.connectivity.AllToAll",
   "from_type": "cell_type_A",
   "to_type": "cell_type_B"
 },
                                                     300
  "B_to_C": {
   "cls": "bsb.connectivity.TouchDetection",
   "from_type": "cell_type_B",
   "to_type": "cell_type_C",
   "intersection_radius": 2.0
                                                     250
  },
  "A to C": {
                                                    Υ
   "cls": "bsb.connectivity.VoxelIntersection",
   "from_type": "cell_type_A",
   "to_type": "cell_type_C",
                                                      200
   "synapses": {
     "type": "norm",
     "loc": 4,
     "scale": 0.4
                                                      150
```


Connectivity


Ad-hoc algorithms, based on experimental evidences (divergence and convergence ratios, and geometrical neuronal features)

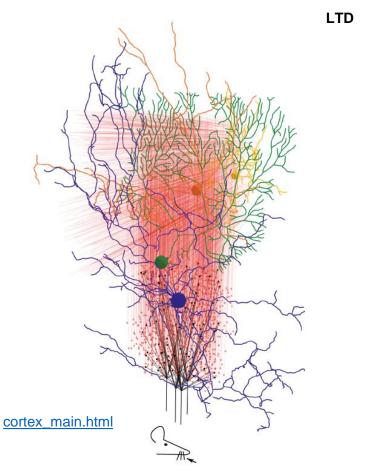
	Convergence	Divergence	Synapses	Synapses/pair
mf-Glom	1 ± 0	20 ± 8	2300	1 ± 0
Glom-GrC	4 ± 0	49 ± 26	110000	1 ± 0
Glom-GoC	56 ± 21	1.7 ± 1.4	3900	1 ± 0
GoC-GrC	2.4 ± 0.88	1000 ± 460	97000	1.4 ± 0.66
GoC-Glom	0.84 ± 0.37	28 ± 14	2000	1 ± 0
GoC-GoC	16 ± 6.5	16 ± 7.1	180000	160 ± 5
GrC (<i>aa</i>)-GoC	320 ± 230	0.78 ± 1.1	22000	1 ± 0
GrC (<i>aa</i>)-PC	82 ± 24	0.28 ± 0.52	20000	2.4 ± 1.1
GrC (<i>pf</i>)-GoC	910 ± 360	2.2 ± 1.6	64000	1 ± 0
GrC (<i>pf</i>)-PC	1500 ± 300	5.1 ± 2.6	140000	1 ± 0
GrC (<i>pf</i>)-SC	480 ± 160	5.1 ± 3.2	140000	1 ± 0
GrC (<i>pf</i>)-BC	740 ± 130	3.8 ± 2.1	110000	1 ± 0
SC-PC	5.4 ± 2.7	1.8 ± 1.5	530	1 ± 0
BC-PC	20 ± 9.9	14 ± 8	2000	1 ± 0
SC-SC	14 ± 6.1	14 ± 5.9	430000	100 ± 4
BC-BC	14 ± 6.7	14 ± 6.6	200000	100 ± 4
GoC-GoC (gap)	8.4 ± 3.5	8.4 ± 3.5	2100	3.5 ± 1.6

~ 1'500'000 chemical synapses and 2'100 electrical synapses

The **cerebellar connectome** was generated through appropriate connection rules, unifying a collection of scattered experimental data into a coherent construct and providing a **new model-based ground-truth** about circuit organization.

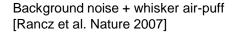
Network simulation

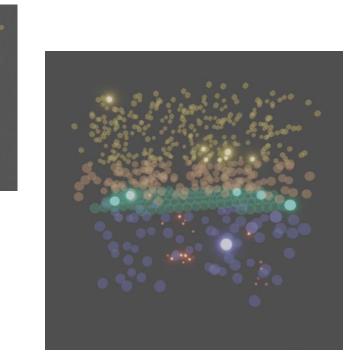
detailed or point-neuron networks

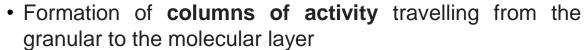

Release probabilities at mf-GrC synapses control

Time [ms]

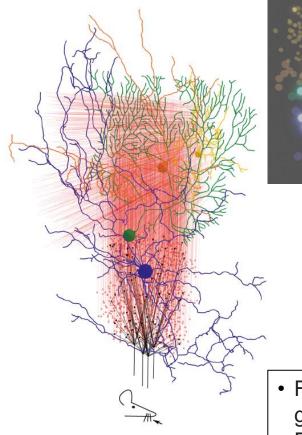
LTP

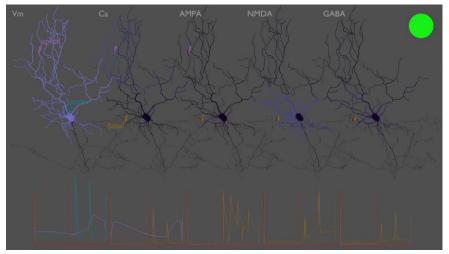

50 pA

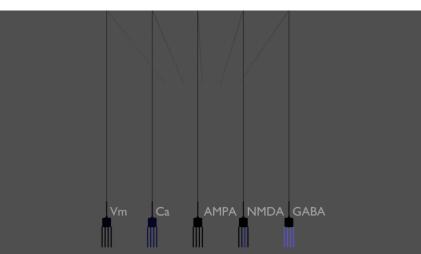

200 ms

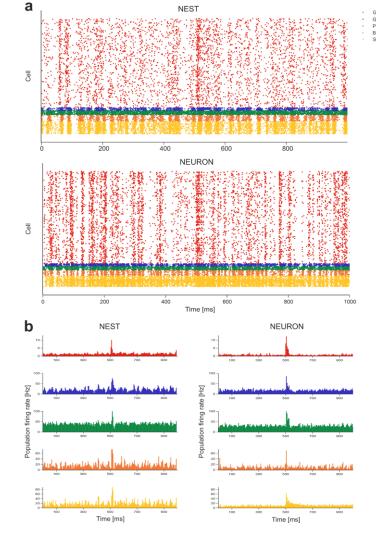


Functional validation against in vivo data, monitoring the impact of subcellular and cellular mechanisms on spatio-temporal signal processing

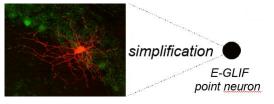

- ✓ Background frequency of all cerebellar neuron types
- ✓ Synchronous oscillatory behaviour in theta band of granular layer in resting state
- ✓ Impulsive responses of all cerebellar neuron types
- ✓ Burst-pause response of Purkinje Cells (PCs)
- ✓ Feedforward and lateral inhibition from Molecular Layer Interneurons (MLIs, i.e. Stellate Cells (SCs) and Basket Cells (BCs)) to Purkinje Cells







• Prediction of the impact of cellular mechanisms on signal propagation and **spatio-temporal processing**



The reconstructed cerebellar network was simulated using the BSB NEST and NEURON Adapters. The simulation lasted 1 second, with background at 4Hz on all mfs and a burst on 4 adjacent mfs starting at 500 ms and lasting 20 ms. For NEST version, optimized E-GLIF neuron models and alpha-based conductance synapses (Geminiani et al., 2019a) were inserted. a) Raster plot of all cells; GrCs are undersampled (random 10%) for clarity. b) Peri-Stimulus-Time-Histogram (PSTH) of each population (number of spikes in 5 ms time bins, normalized on the total number of cells)

University of

Pavia Egidio D'Angelo

Neurophysiology lab

Francesca Prestori Lisa Mapelli Simona Tritto Teresa Soda Marialuisa Tognolina Ileana Montagna Alessandra Ottaviani Danila Di Domenico Eleonora Pali

Neurocomputation lab

Claudia Casellato Alice Geminiani Stefano Masoli Martina Rizza Stefano Casali Cristiano Alessandro Robin De Schepper **Brain Modelling &**

Neuroimaging lab

Claudia Gandini Wheeler-Kingshott Fulvia Palesi Gloria Castellazzi (IRCCS Mondino) Giovanni Savini (IRCCS Mondino) Nick Rolandi Anita Monteverdi Roberta Lorenzi Marta Gaviraghi

Collaborations

UCLION

Claudia Gandini Wheeler-Kingshott Politecnico Milano - NEARlab Alessandra Pedrocchi Alessandra Trapani Francesco Sheiban Massimo Grillo **CNRS Aix-Marseille** Viktor Jirsa **CHARITE Berlin** Petra Ritter Jil Meier Denis Perkidis **CNR IDBF** Michele Migliore YALE Michael Hines **AMRITA** Shyam Diwakar **NYU Hunter College** Mitchell Goldfarb **ERASMUS-MC** Chris DeZeeuw Mario Negrello **IRCCS FBF Brescia** Alberto Redolfi **University of Manchester Oliver Rhodes** Petrut Bogdan UNIMORE Jonathan Mapelli Daniela Gandolfi **EPFL** Dimitri Rodarie Alberto Antonietti