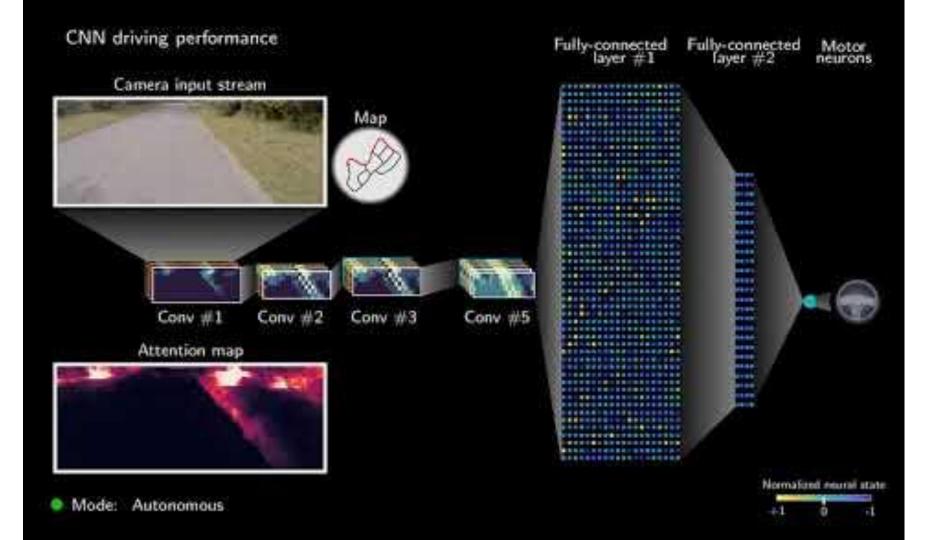
## Neural Circuit Policies Machine Learning Inspired by the *C. elegans* Nervous System

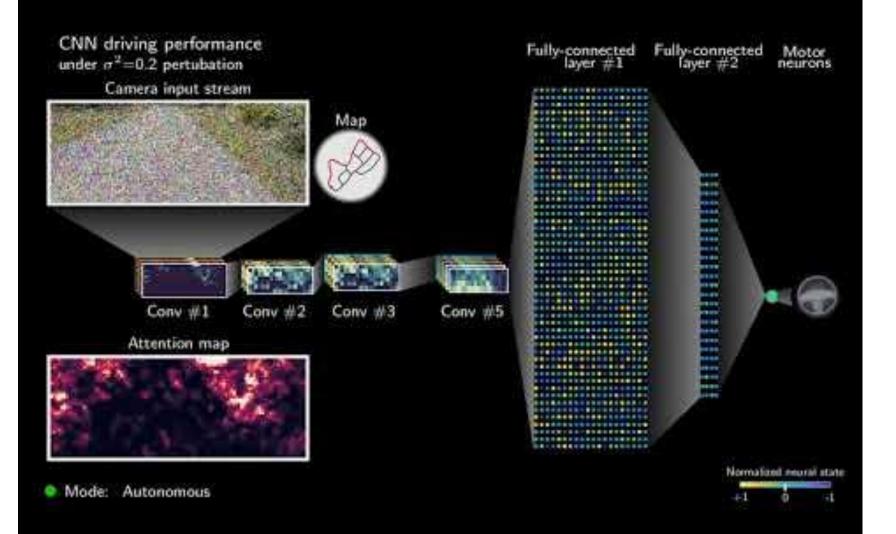
#### Mathias Lechner ISTA & MIT





Massachusetts Institute of Technology





• High level abstraction of biological nervous system

- High level abstraction of biological nervous system
- Neuron = sum and activation function

$$y = f\Big(\sum_{i=1}^{n} x_i w_i + b\Big)$$

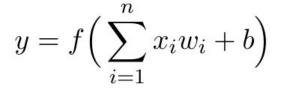
n

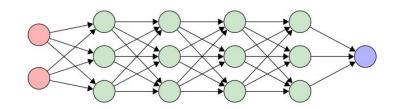
- High level abstraction of biological nervous system
- Neuron = sum and activation function
- Synapse = multiplication with a constant

$$y = f\Big(\sum_{i=1}^{n} x_i w_i + b\Big)$$

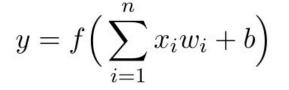
n

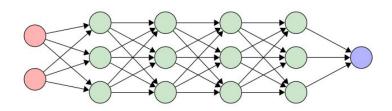
- High level abstraction of biological nervous system
- Neuron = sum and activation function
- Synapse = multiplication with a constant
- Connectivity = Feedforward





- High level abstraction of biological nervous system
- Neuron = sum and activation function
- Synapse = multiplication with a constant
- Connectivity = Feedforward





## What do we gain if we move <u>a bit</u> closer to biology?

## C. elegans

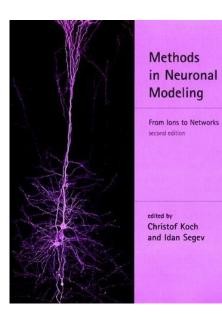
- 1 mm long
- Transparent body
- 959 cells (adult)
- 95 muscle cells
- 302 neurons (non-spiking)
- ~8000 synapses
- Social behavior
- Learning
- Complex search behavior
- Multi-modal sensory processing



## Neuron model

[Koch and Segev 1989, Wicks et al. 1996]

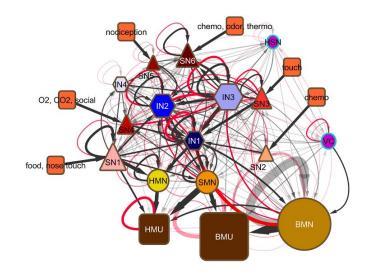
- Neuron membrane = Capacitor
- Ion-channels



## **Connection model**

[White et al. 1986, Cook et al. 2019]

- Sparsity
- Recurrency



Subset of the C. elegans connectome (Copyright Emmons Lab/wormwiring.org)

| Neuron model                                | Symbol     | Example Usage                                        |
|---------------------------------------------|------------|------------------------------------------------------|
| Binary<br>Threshold<br>Gate                 | -k         | Digital circuits<br>Binarized neural networks        |
| Standard<br>"Artificial"<br>Neuron          | To to      | Machine learning models                              |
| Integrating<br>Neuron                       | <u>_</u> + | Continuous-time recurrent<br>neural network (CT-RNN) |
| Neuron with<br>1st-order<br>ion-channels    | Ð          | Our work<br>(Neural Circuit Policies)                |
| Neuron with<br>Higher-order<br>ion-channels |            | Spiking neural networks<br>e.g. Hodgkin-Huxley model |
| <br>Compartmental<br>Neuron                 |            | Neuroscience research                                |
| <br>Biological<br>Neuron                    | Where      |                                                      |

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

$$x(t+1) = f_{\theta}\Big(x(t), I(t), t\Big)$$

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

Neural ODE [Chen et al. NeurIPS 2018]

$$x(t+1) = f_{\theta} \Big( x(t), I(t), t \Big)$$
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f_{\theta} \Big( x(t), I(t), t \Big)$$

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

Neural ODE [Chen et al. NeurIPS 2018]

Continuous-time (CT) RNN [Funahashi et al. 1993]

$$\begin{aligned} x(t+1) &= f_{\theta} \Big( x(t), I(t), t \Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= f_{\theta} \Big( x(t), I(t), t \Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= -\frac{x(t)}{\tau} + f_{\theta} \Big( x(t), I(t), t \Big) \end{aligned}$$

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

Neural ODE [Chen et al. NeurIPS 2018]

Continuous-time (CT) RNN [Funahashi et al. 1993]

Liquid Time-Constant Network (LTC)

$$\begin{aligned} x(t+1) &= f_{\theta}\Big(x(t), I(t), t\Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= f_{\theta}\Big(x(t), I(t), t\Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= -\frac{x(t)}{\tau} + f_{\theta}\Big(x(t), I(t), t\Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= -\frac{x(t)}{\tau} + f_{\theta}\Big(x(t), I(t), t\Big) \underbrace{\left(A - x(t)\right)}_{\text{``Leaky-integrator''}} \end{aligned}$$

Hasani\*, Lechner\*, Amini, Rus, Grosu. Liquid Time-constant Networks. AAAI , 2021

## Some properties of LTC

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -\frac{x(t)}{\tau} + f_{\theta}\Big(x(t), I(t), t\Big)\Big(A - x(t)\Big)\Big)$$

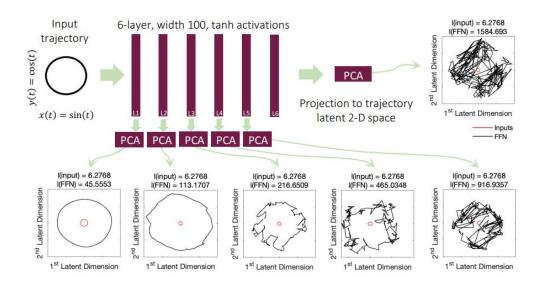
**Theorem 1**: "Time-constant" is bounded (i.e., in x(t)\*g(x) the values of g(x) are bounded)

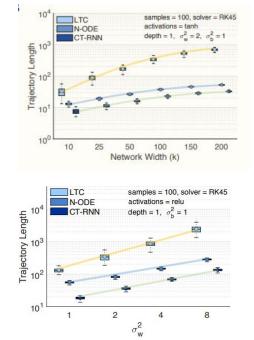
Theorem 2: The state of each neuron is bounded

Theorem 3: LTCs are universal approximator

## **Trajectory length**

• Empirical metric for modelling capacity [Raghu et al. 2017]





Hasani\*, Lechner\*, Amini, Rus, Grosu. Liquid Time-constant Networks. AAAI , 2021

## Experiments

- Fully-connected ("all-to-all") LTC
- Compare to baseline RNNs

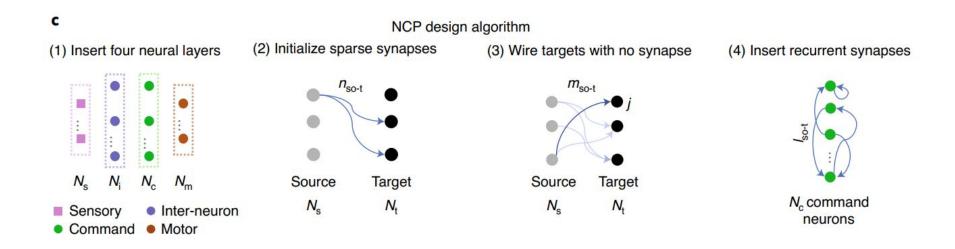
| Dataset              | Metric          | LSTM [28]             | CT-RNN [47]        | Neural ODE [6]        | CT-GRU [38]        | LTC (ours)                  |
|----------------------|-----------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------------|
| Gesture              | (accuracy)      | $64.57\% \pm 0.59$    | $59.01\% \pm 1.22$ | $46.97\% \pm 3.03$    | $68.31\% \pm 1.78$ | $69.55\% \pm 1.13$          |
| Occupancy            | (accuracy)      | $93.18\% \pm 1.66$    | $94.54\% \pm 0.54$ | $90.15\% \pm 1.71$    | $91.44\% \pm 1.67$ | $94.63\% \pm 0.17$          |
| Activity recognition | (accuracy)      | $95.85\% \pm 0.29$    | $95.73\% \pm 0.47$ | <b>97.26</b> % ± 0.10 | $96.16\% \pm 0.39$ | $95.67\% \pm 0.575$         |
| Sequential MNIST     | (accuracy)      | <b>98.41</b> % ± 0.12 | $96.73\% \pm 0.19$ | $97.61\% \pm 0.14$    | $98.27\% \pm 0.14$ | $97.57\% \pm 0.18$          |
| Traffic              | (squared error) | $0.169 \pm 0.004$     | $0.224 \pm 0.008$  | $1.512 \pm 0.179$     | $0.389 \pm 0.076$  | $0.099 \pm 0.0095$          |
| Power                | (squared-error) | $0.628 \pm 0.003$     | $0.742 \pm 0.005$  | $1.254 \pm 0.149$     | $0.586 \pm 0.003$  | $0.642 \pm 0.021$           |
| Ozone                | (F1-score)      | $0.284 \pm 0.025$     | $0.236 \pm 0.011$  | $0.168 \pm 0.006$     | $0.260 \pm 0.024$  | $\textbf{0.302} \pm 0.0155$ |

#### Time series prediction Mean and standard deviation, n=5

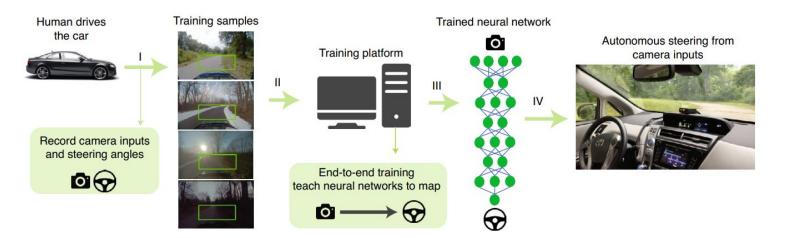
[28] Hochreiter et al. 1997
[47] Rubanova et al. NeurIPS 2019
[6] Chen et al. NeurIPS, 2018
[38] Moser et al. Arxiv, 2017

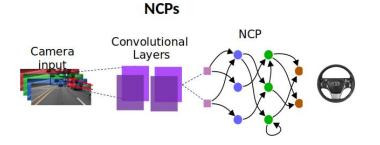
Hasani\*, Lechner\*, Amini, Rus, Grosu. Liquid Time-constant Networks. AAAI , 2021

## Combining the LTC model with structured sparsity: Neural Circuit Policies (NCP)

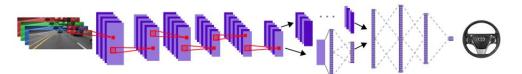


- End-to-end autonomous driving
- Offline open-loop training (supervised learning)
- Online closed-loop test on real car



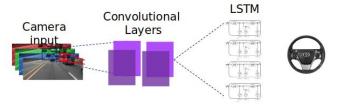


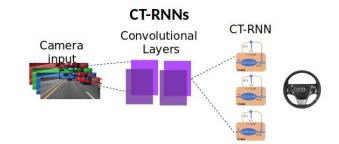
**Convolutional Neural Networks (CNNs)** 

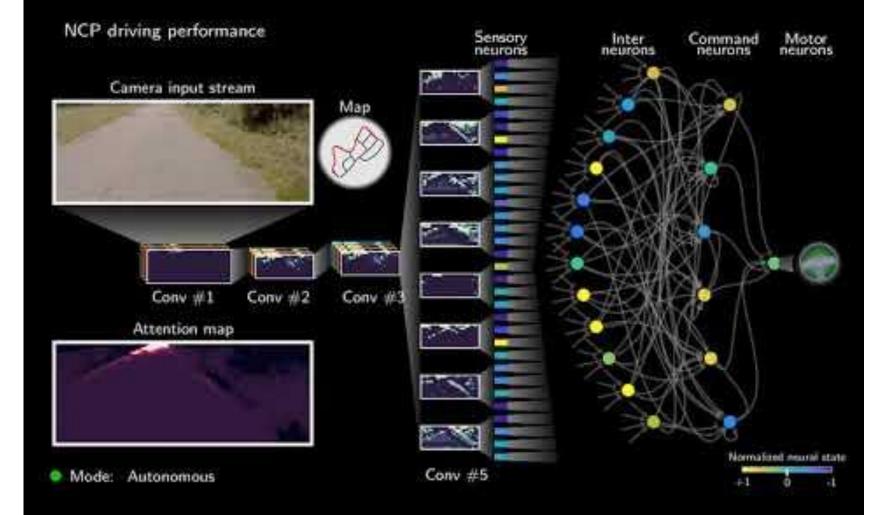


| Model  | Conv layers Param | <b>RNN</b> neurons | RNN synapses | RNN trainable param |
|--------|-------------------|--------------------|--------------|---------------------|
| CNN    | 5,068,900         | -                  | -            | -                   |
| CT-RNN | 79,420            | 64                 | 6112         | 6273                |
| LSTM   | 79,420            | 64                 | 24640        | 24897               |
| NCP    | 79,420            | 19                 | 253          | 1065                |

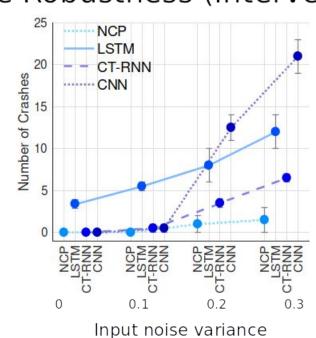
LSTMs





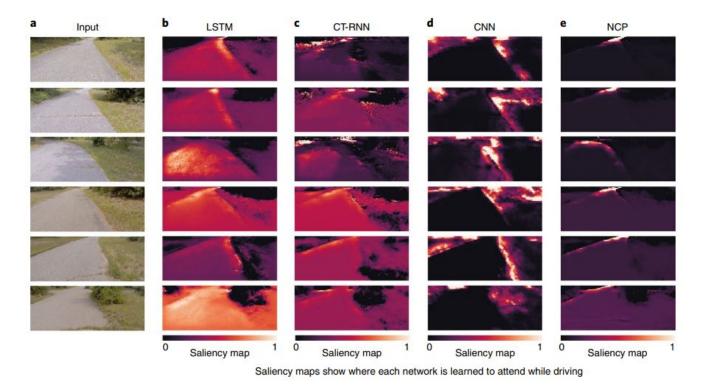


## Results

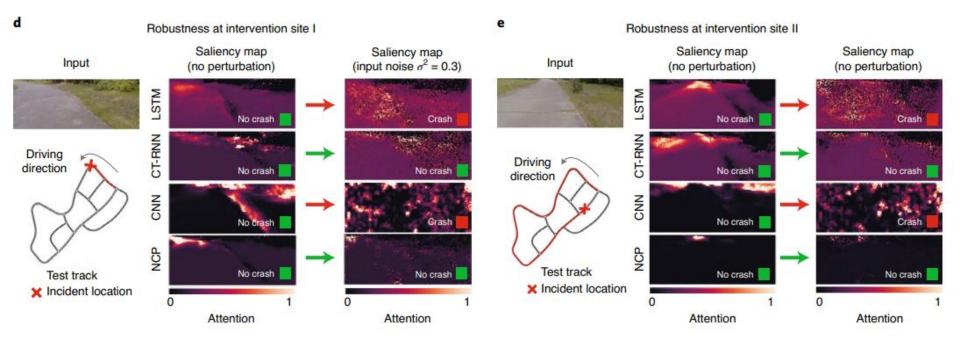


#### Noise Robustness (Interventions)

## Saliency maps



## Saliency maps



# Why did the NCP learn a more robust behavior?

## Dynamical Causal Models (DCM) [Friston et al., 2003]

### Dynamical Causal Models (DCM) [Friston et al., 2003]

• Bilinear approximation of a dynamical system

$$d\mathbf{x}/dt = (A + \mathbf{I}(t)B)\mathbf{x}(t) + C\mathbf{I}(t)$$
$$A = \frac{\partial F}{\partial \mathbf{x}(t)}\Big|_{I=0}, \ B = \frac{\partial^2 F}{\partial \mathbf{x}(t)\partial \mathbf{I}(t)}, \ C = \frac{\partial F}{\partial \mathbf{I}(t)}\Big|_{x=0},$$

Vorbach\*, Hasani\*, Amini, Lechner, Rus. Causal Navigation by Continuous-time Neural Networks. NeurIPS, 2021

## Dynamical Causal Models (DCM) [Friston et al., 2003]

- Bilinear approximation of a dynamical system
- Shown to learn causal structures of brain regions and sequential tasks [Breakspear, 2017, Ju and Bassett, 2020, Penny et al., 2005]

$$d\mathbf{x}/dt = (A + \mathbf{I}(t)B)\mathbf{x}(t) + C\mathbf{I}(t)$$
$$A = \frac{\partial F}{\partial \mathbf{x}(t)}\Big|_{I=0}, \ B = \frac{\partial^2 F}{\partial \mathbf{x}(t)\partial \mathbf{I}(t)}, \ C = \frac{\partial F}{\partial \mathbf{I}(t)}\Big|_{x=0},$$

**Proposition 1**: LTCs are dynamical causal models

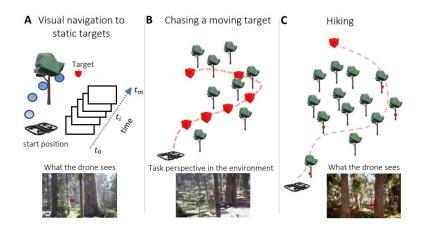
• Drone navigation

- Drone navigation
- Photorealistic simulation (Airsim)



- Drone navigation
- Photorealistic simulation (Airsim)
- 3 tasks





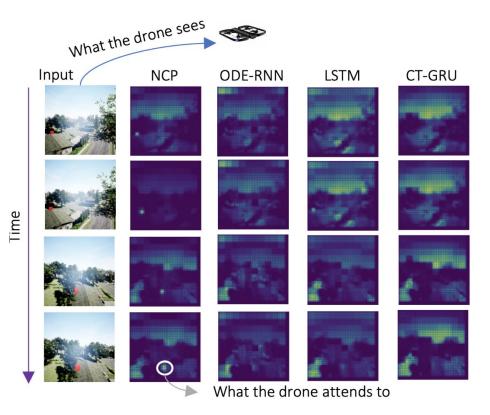
## Results



|                | Static Target |     |            |            |           |       | Chasing |            |            |       |
|----------------|---------------|-----|------------|------------|-----------|-------|---------|------------|------------|-------|
| Model          | Clear         | Fog | Light Rain | Heavy Rain | Occlusion | Clear | Fog     | Light Rain | Heavy Rain | Clear |
| CNN            | 36%           | 6%  | 32%        | 2%         | 4%        | 50%   | 42%     | 54%        | 28%        | 0%    |
| LSTM           | 24%           | 22% | 22%        | 4%         | 20%       | 66%   | 62%     | 56%        | 44%        | 2%    |
| <b>ODE-RNN</b> | 18%           | 10% | 18%        | 2%         | 24%       | 52%   | 42%     | 62%        | 44%        | 4%    |
| CT-GRU         | 40%           | 8%  | 60%        | 32%        | 28%       | 38%   | 36%     | 48%        | 42%        | 0%    |
| NCP (ours)     | 48%           | 40% | 52%        | 60%        | 32%       | 78%   | 52%     | 84%        | 54%        | 30%   |

Vorbach\*, Hasani\*, Amini, Lechner, Rus. Causal Navigation by Continuous-time Neural Networks. NeurIPS, 2021

## Attention maps



Vorbach\*, Hasani\*, Amini, Lechner, Rus. Causal Navigation by Continuous-time Neural Networks. NeurIPS, 2021

## Summary

