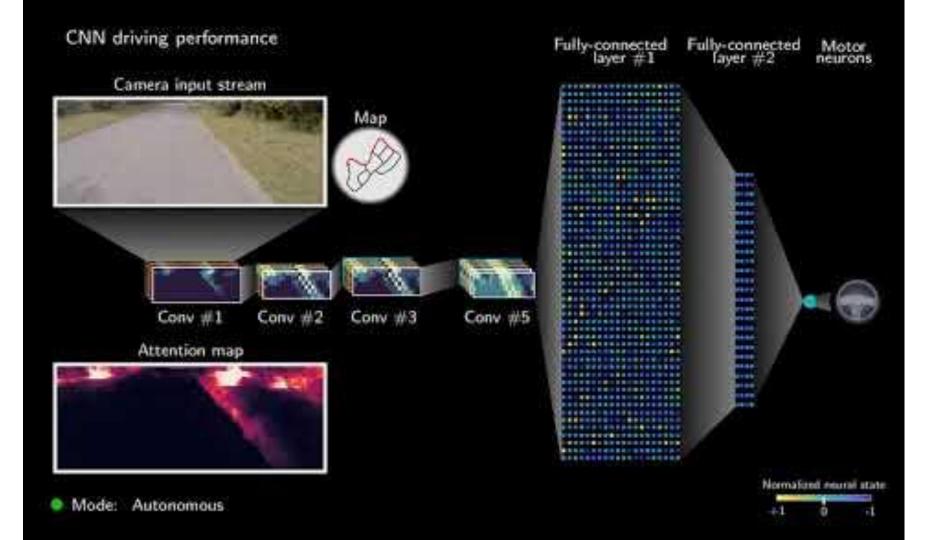
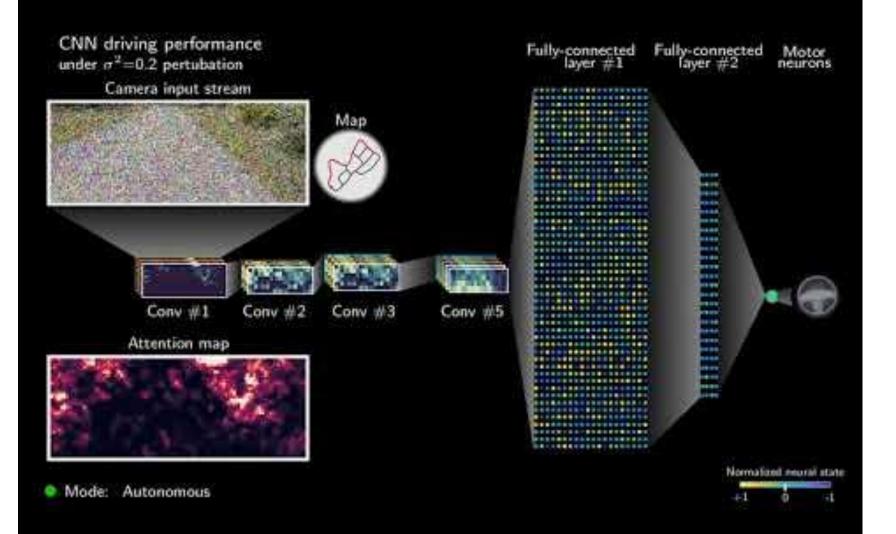
Neural Circuit Policies Machine Learning Inspired by the *C. elegans* Nervous System

Mathias Lechner ISTA & MIT

Massachusetts Institute of Technology





• High level abstraction of biological nervous system

- High level abstraction of biological nervous system
- Neuron = sum and activation function

$$y = f\Big(\sum_{i=1}^{n} x_i w_i + b\Big)$$

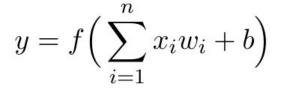
n

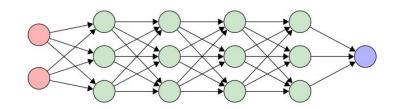
- High level abstraction of biological nervous system
- Neuron = sum and activation function
- Synapse = multiplication with a constant

$$y = f\Big(\sum_{i=1}^{n} x_i w_i + b\Big)$$

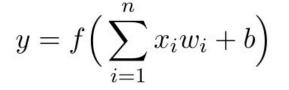
n

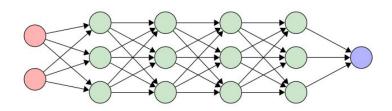
- High level abstraction of biological nervous system
- Neuron = sum and activation function
- Synapse = multiplication with a constant
- Connectivity = Feedforward





- High level abstraction of biological nervous system
- Neuron = sum and activation function
- Synapse = multiplication with a constant
- Connectivity = Feedforward





What do we gain if we move <u>a bit</u> closer to biology?

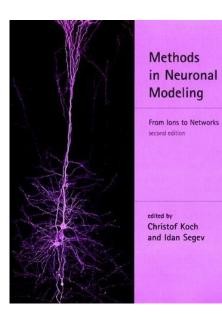
C. elegans

- 1 mm long
- Transparent body
- 959 cells (adult)
- 95 muscle cells
- 302 neurons (non-spiking)
- ~8000 synapses
- Social behavior
- Learning
- Complex search behavior
- Multi-modal sensory processing

Neuron model

[Koch and Segev 1989, Wicks et al. 1996]

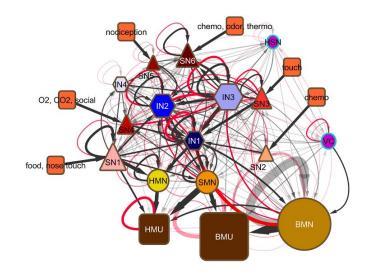
- Neuron membrane = Capacitor
- Ion-channels



Connection model

[White et al. 1986, Cook et al. 2019]

- Sparsity
- Recurrency



Subset of the C. elegans connectome (Copyright Emmons Lab/wormwiring.org)

Neuron model	Symbol	Example Usage
Binary Threshold Gate	-k	Digital circuits Binarized neural networks
Standard "Artificial" Neuron	To to	Machine learning models
Integrating Neuron	<u>_</u> +	Continuous-time recurrent neural network (CT-RNN)
Neuron with 1st-order ion-channels	Ð	Our work (Neural Circuit Policies)
Neuron with Higher-order ion-channels		Spiking neural networks e.g. Hodgkin-Huxley model
 Compartmental Neuron		Neuroscience research
 Biological Neuron	Where	

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

$$x(t+1) = f_{\theta}\Big(x(t), I(t), t\Big)$$

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

Neural ODE [Chen et al. NeurIPS 2018]

$$x(t+1) = f_{\theta} \Big(x(t), I(t), t \Big)$$
$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = f_{\theta} \Big(x(t), I(t), t \Big)$$

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

Neural ODE [Chen et al. NeurIPS 2018]

Continuous-time (CT) RNN [Funahashi et al. 1993]

$$\begin{aligned} x(t+1) &= f_{\theta} \Big(x(t), I(t), t \Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= f_{\theta} \Big(x(t), I(t), t \Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= -\frac{x(t)}{\tau} + f_{\theta} \Big(x(t), I(t), t \Big) \end{aligned}$$

Standard Recurrent Neural Network (RNN) [Hopfield 1982]

Neural ODE [Chen et al. NeurIPS 2018]

Continuous-time (CT) RNN [Funahashi et al. 1993]

Liquid Time-Constant Network (LTC)

$$\begin{aligned} x(t+1) &= f_{\theta}\Big(x(t), I(t), t\Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= f_{\theta}\Big(x(t), I(t), t\Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= -\frac{x(t)}{\tau} + f_{\theta}\Big(x(t), I(t), t\Big) \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= -\frac{x(t)}{\tau} + f_{\theta}\Big(x(t), I(t), t\Big) \underbrace{\left(A - x(t)\right)}_{\text{``Leaky-integrator''}} \end{aligned}$$

Hasani*, Lechner*, Amini, Rus, Grosu. Liquid Time-constant Networks. AAAI , 2021

Some properties of LTC

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -\frac{x(t)}{\tau} + f_{\theta}\Big(x(t), I(t), t\Big)\Big(A - x(t)\Big)\Big)$$

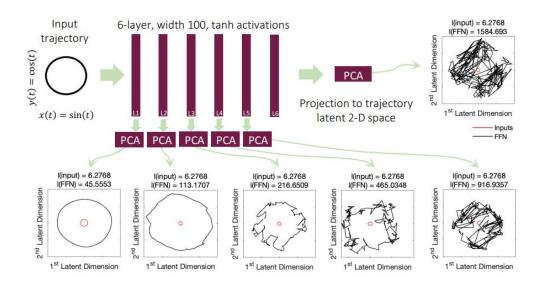
Theorem 1: "Time-constant" is bounded (i.e., in x(t)*g(x) the values of g(x) are bounded)

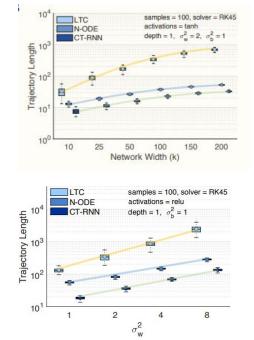
Theorem 2: The state of each neuron is bounded

Theorem 3: LTCs are universal approximator

Trajectory length

• Empirical metric for modelling capacity [Raghu et al. 2017]





Hasani*, Lechner*, Amini, Rus, Grosu. Liquid Time-constant Networks. AAAI , 2021

Experiments

- Fully-connected ("all-to-all") LTC
- Compare to baseline RNNs

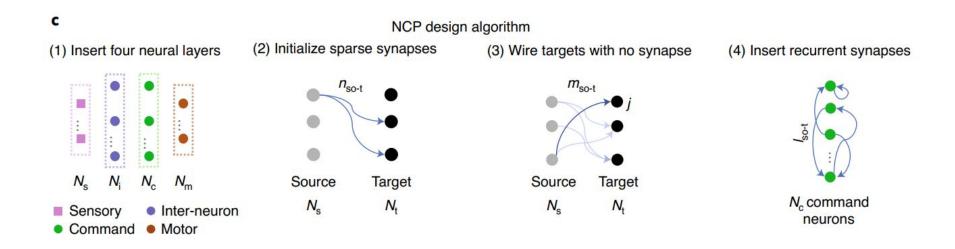
Dataset	Metric	LSTM [28]	CT-RNN [47]	Neural ODE [6]	CT-GRU [38]	LTC (ours)
Gesture	(accuracy)	$64.57\% \pm 0.59$	$59.01\% \pm 1.22$	$46.97\% \pm 3.03$	$68.31\% \pm 1.78$	$69.55\% \pm 1.13$
Occupancy	(accuracy)	$93.18\% \pm 1.66$	$94.54\% \pm 0.54$	$90.15\% \pm 1.71$	$91.44\% \pm 1.67$	$94.63\% \pm 0.17$
Activity recognition	(accuracy)	$95.85\% \pm 0.29$	$95.73\% \pm 0.47$	97.26 % ± 0.10	$96.16\% \pm 0.39$	$95.67\% \pm 0.575$
Sequential MNIST	(accuracy)	98.41 % ± 0.12	$96.73\% \pm 0.19$	$97.61\% \pm 0.14$	$98.27\% \pm 0.14$	$97.57\% \pm 0.18$
Traffic	(squared error)	0.169 ± 0.004	0.224 ± 0.008	1.512 ± 0.179	0.389 ± 0.076	0.099 ± 0.0095
Power	(squared-error)	0.628 ± 0.003	0.742 ± 0.005	1.254 ± 0.149	0.586 ± 0.003	0.642 ± 0.021
Ozone	(F1-score)	0.284 ± 0.025	0.236 ± 0.011	0.168 ± 0.006	0.260 ± 0.024	$\textbf{0.302} \pm 0.0155$

Time series prediction Mean and standard deviation, n=5

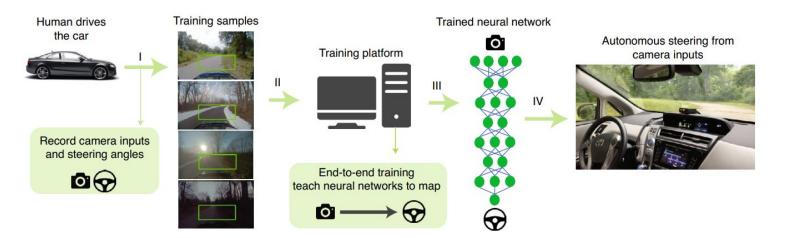
[28] Hochreiter et al. 1997
[47] Rubanova et al. NeurIPS 2019
[6] Chen et al. NeurIPS, 2018
[38] Moser et al. Arxiv, 2017

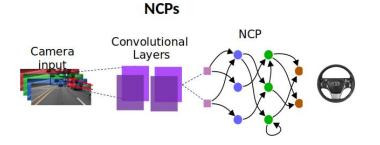
Hasani*, Lechner*, Amini, Rus, Grosu. Liquid Time-constant Networks. AAAI , 2021

Combining the LTC model with structured sparsity: Neural Circuit Policies (NCP)

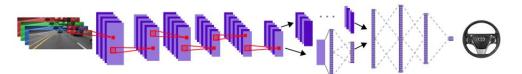


- End-to-end autonomous driving
- Offline open-loop training (supervised learning)
- Online closed-loop test on real car



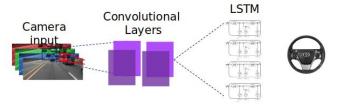


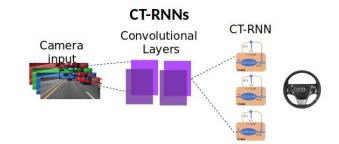
Convolutional Neural Networks (CNNs)

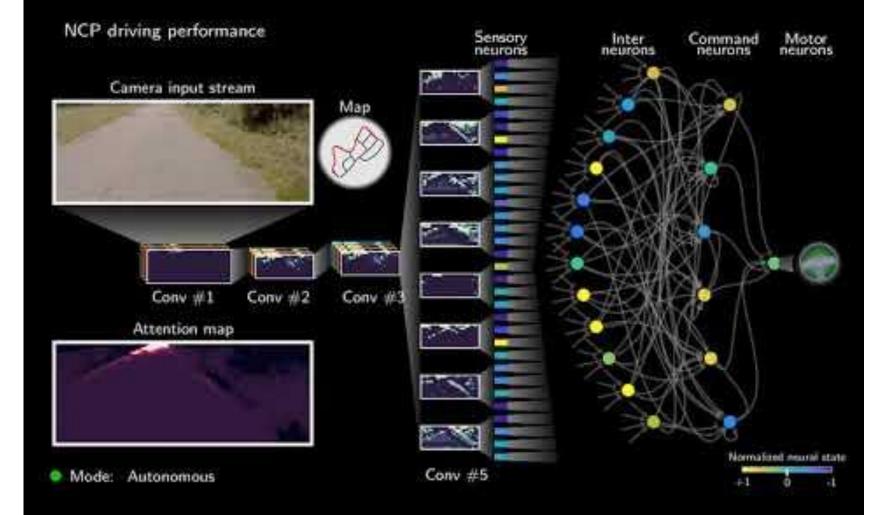


Model	Conv layers Param	RNN neurons	RNN synapses	RNN trainable param
CNN	5,068,900	-	-	-
CT-RNN	79,420	64	6112	6273
LSTM	79,420	64	24640	24897
NCP	79,420	19	253	1065

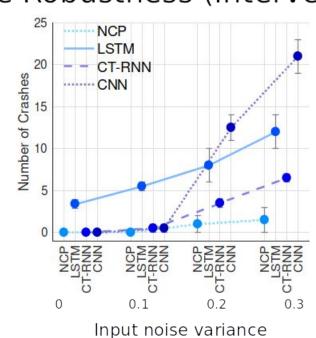
LSTMs





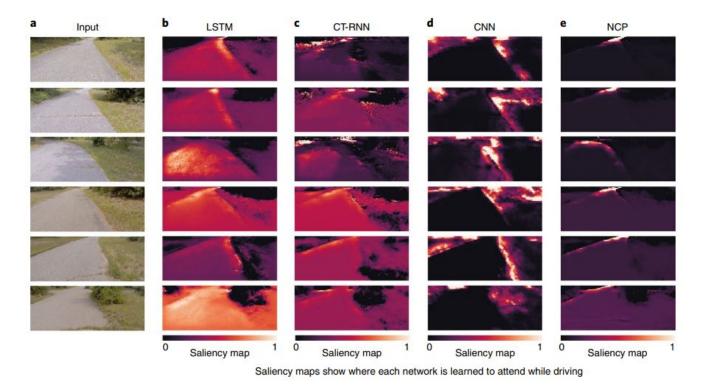


Results

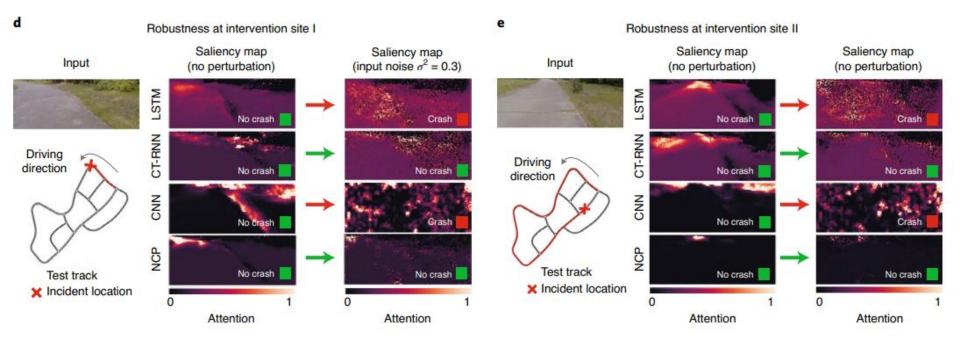


Noise Robustness (Interventions)

Saliency maps



Saliency maps



Why did the NCP learn a more robust behavior?

Dynamical Causal Models (DCM) [Friston et al., 2003]

Dynamical Causal Models (DCM) [Friston et al., 2003]

• Bilinear approximation of a dynamical system

$$d\mathbf{x}/dt = (A + \mathbf{I}(t)B)\mathbf{x}(t) + C\mathbf{I}(t)$$
$$A = \frac{\partial F}{\partial \mathbf{x}(t)}\Big|_{I=0}, \ B = \frac{\partial^2 F}{\partial \mathbf{x}(t)\partial \mathbf{I}(t)}, \ C = \frac{\partial F}{\partial \mathbf{I}(t)}\Big|_{x=0},$$

Vorbach*, Hasani*, Amini, Lechner, Rus. Causal Navigation by Continuous-time Neural Networks. NeurIPS, 2021

Dynamical Causal Models (DCM) [Friston et al., 2003]

- Bilinear approximation of a dynamical system
- Shown to learn causal structures of brain regions and sequential tasks [Breakspear, 2017, Ju and Bassett, 2020, Penny et al., 2005]

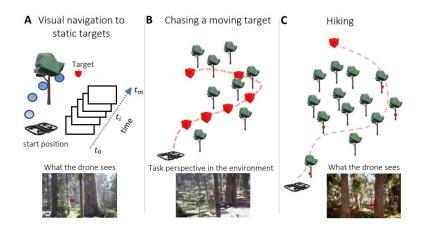
$$d\mathbf{x}/dt = (A + \mathbf{I}(t)B)\mathbf{x}(t) + C\mathbf{I}(t)$$
$$A = \frac{\partial F}{\partial \mathbf{x}(t)}\Big|_{I=0}, \ B = \frac{\partial^2 F}{\partial \mathbf{x}(t)\partial \mathbf{I}(t)}, \ C = \frac{\partial F}{\partial \mathbf{I}(t)}\Big|_{x=0},$$

Proposition 1: LTCs are dynamical causal models

• Drone navigation

- Drone navigation
- Photorealistic simulation (Airsim)

- Drone navigation
- Photorealistic simulation (Airsim)
- 3 tasks

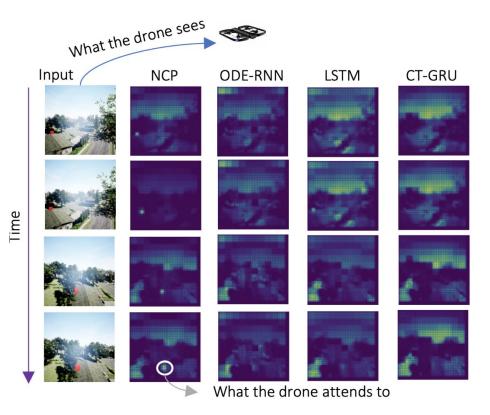


Results

	Static Target						Chasing			
Model	Clear	Fog	Light Rain	Heavy Rain	Occlusion	Clear	Fog	Light Rain	Heavy Rain	Clear
CNN	36%	6%	32%	2%	4%	50%	42%	54%	28%	0%
LSTM	24%	22%	22%	4%	20%	66%	62%	56%	44%	2%
ODE-RNN	18%	10%	18%	2%	24%	52%	42%	62%	44%	4%
CT-GRU	40%	8%	60%	32%	28%	38%	36%	48%	42%	0%
NCP (ours)	48%	40%	52%	60%	32%	78%	52%	84%	54%	30%

Vorbach*, Hasani*, Amini, Lechner, Rus. Causal Navigation by Continuous-time Neural Networks. NeurIPS, 2021

Attention maps



Vorbach*, Hasani*, Amini, Lechner, Rus. Causal Navigation by Continuous-time Neural Networks. NeurIPS, 2021

Summary

