
1restricted

Neuromorphic AI - An Automotive Application View of 

Event Based Processing
K. Knobloch, P. Gerhards

Infineon Development Center Automotive Electronics & AI

2022-06-29



2Infineon ProprietaryCopyright © Infineon Technologies AG 2022. All rights reserved.restricted2022-06-29

› Assisted/autonomous driving and electric drive impact on automotive E/E-architecture

› Automotive µC and AI – concepts, what are the key applications

› Benefits expected from neuromorphic (spiking) neural networks

› Example: neuromorphic processing of radar data 

› Summary

Outline
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Impact of AI compute platform for autonomous driving on power?

von Neumann

https://blogs.nvidia.com/blog/20

20/05/14/drive-platform-nvidia-

ampere-architecture/

Power consumption 

autonomous driving

Sze et al.: Efficient Processing of Deep Neural Networks: A Tutorial and Survey

Power for memory access

800W would add to e.g. 

15kWh/100km (VW ID.4)

=> in fact ~10…30% of total 

power currently needed for L5 

driving!

https://blogs.nvidia.com/blog/2020/05/14/drive-platform-nvidia-ampere-architecture/
https://confluencewikiprod.intra.infineon.com/download/attachments/143013066/2017_Sze_DNN_hardware_survey.pdf?version=1&modificationDate=1565341855000&api=v2
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Automotive trends provide severe challenge for E/E-architecture

source: Forbes © 2018, Sam Abuelsamid

Wiring harnesses for the 2018 Chevy Bolt EV and the autonomous version

Autonomous driving requirements results in massive challenges for 

E/E-architecture – wiring/connections to be reduced!
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E/E-Architecture needs to adopt on connectivity, e-mobility and 

autonomous driving

› Zonal E/E architectures enable complexity reduction in hardware (e.g. wiring) and software development

› Optimized mapping of required software functions and available hardware computing resources 

› OEM objective: abstraction, scalable system (software) architecture across different vehicle types

Domain architecture Zone architectureDistributed architecture
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Requirements for typical Automotive µC Application Tasks

Execution time in log10 scale

1µs 10µs 100µs 1ms 10ms 100ms

# of math. operations

in log2 scale

on-board 

charger

DC/DC 

converter

traction 

motor 

inverter
virtual 

calibration

Radar 

Lidar

sensor 

fusion

battery mgmt system

Domain / zone 

control

predictive vehicle 

motion control

intrusion detection

system modelling 

(e.g. trajectory 

planning)

Complex data 

processing and 

observer based 

controlling of sensor 

actuator systems 

Artificial neural network 

(MLP, RBF, RNN, CNN) 

based system modelling 

and object classification

Implemented tasks 

per applications

virtual sensors 
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In electrified vehicles AI can show great benefits in virtual sensor or 

system modelling use cases

SoC & SoH Estimation
› Challenge: estimation of strong non 

linear electrochemical reactions 

› Target: use known values in non-

linear models: voltage, current, 

temperature

Modeling of Wheel Suspensions
› Challenge: Accurate predictions of the vehicle motion behavior 

and adapt it to the wishes of the targeted market segment

› Target: Modelling of wheel carrier acceleration and spring /damper

force considering maneuvers and road unevenness

Sensorless Induction Motor Drive
› Challenge: mismatching actual and 

estimated rotor flux limiting 

dynamic performance

› Rotor flux estimation influenced 

by rotor resistance (heating)

› Target: better resistance estimation

Fault Diagnosis
› Challenge: additional sensor for 

vibration analysis of bearings needed

(up to 50% of all faults)

› Target: Use stator current for 

diagnosis

Vehicle Motion Control
› Challenge: high number of variables 

for dynamics optimization

› Target: better dynamics 

LSTM

LSTM RNN MLP

RNN MLP

MLP

RNN MLP
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Predictive neural networks can help to increase energy efficiency, 

thermal load & driving smoothness

Torque request

Steering angle

Car sensor data

TriCore™ PPU

Signal 

Processing

Default Torque 

Vectoring

Control 

Optimization

Stability 

Functions

Virtual 

Sensors

(based on NN)

Predictive 

Neural 

Network

AURIX TC4x

Torque

Torque

Vehicle Speed

Steering wheel

Acceleration

...

Output:

Future slip 

values of 

each wheel

𝑠𝑖𝑔

𝑎00 ⋯ 𝑎0𝑚
⋮ ⋱ ⋮
𝑎𝑛0 ⋯ 𝑎𝑛𝑚

∙

𝑥0
⋮
𝑥𝑚

Activation 

function

Weight 

matrix

Input

vector

Concept Mathematical implementation

Torque vectoring

› Main objective:

› Independent 

torque 

control at 

each wheel

› Effect when driving 

a curve: 

› Provide more 

torque to the 

outside rear 

wheel 

› Reduce the 

speed of the 

inside wheels

VM

O
Vehicle 

motion 

control

Handling

Efficiency

Smoothness

Thermal stress

M. Dendaluce Jahnke, et al., 

"Efficient Neural Network 

Implementations on Parallel 

Embedded Platforms Applied to 

Real-Time Torque-Vectoring 

Optimization Using Predictions for 

Multi-Motor Electric Vehicles," in 

Electronics 2019, 8, 250
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Challenges for LSTM on MAC accelerators – google TPU (ISCA 2017)

mem. bandwidth

peak comp. rate

https://doi.org/10.1145/3079856.3080246

LSTM

CNN

en.Wikipedia.org

MAC accelerators for LSTM have 

to go back from matrix-matrix to 

vector-matrix and typically are 

limited by memory bandwidth

LSTM … a gated RNN

https://doi.org/10.1145/3079856.3080246
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Mike Davies on Loihi app. perf., Intel @NICE2021

feed forward DNNs

(CPUs, GPUs, …)

Intel Loihi:

“Recurrent 

networks with 

bio-inspired 

properties give 

the best gains”

What Applications now working best on real Platforms?

https://www.youtube.com/watch?v=-dl1FPrpw1A

lo
w

 l
a

te
n

c
y

low power

https://www.youtube.com/watch?v=-dl1FPrpw1A
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What are Gains by Spiking Neural Networks?

time

p
o

te
n

ti
a

l

in

out

neuron (LIF)

low power - sparse events, integrated memory and compute

low latency - process when event occurs, #neuron connections

inherent recurrence - membrane potential

adaptive - local (un)supervised learning

e.g. SpiNNaker2
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Neuromorphic Signal Processing for Radar

radar analog µC

neuromorphic processor

high-res.

radar

analog digital

FFT

target detection

or

object list

SpiNNaker2

f

time

Get low-power radar processing 

embedded or next to radar MMIC

FMCW

Gbit
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Automotive Radar Processing with Spiking Neural Networks
https://www.frontiersin.org/articles/10.3389/fnins.2022.851774/abstract

digital

raw data

spiking

FFT/DFT
spiking

CFAR

http://arxiv.org/abs/2202.12650v1

spiking

object

detection

spiking

object

tracking
SNN

https://www.frontiersin.org/articles/1

0.3389/fnbot.2021.688344/full

DFT as matrix multiplication CFAR by IF neuron (time encoded)

https://www.frontiersin.org/articles/10.3389/fnins.2022.851774/abstract
http://arxiv.org/abs/2202.12650v1
https://www.frontiersin.org/articles/10.3389/fnbot.2021.688344/full
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BPTT with Surrogate Gradient 

[1] E. O. Neftci, H. Mostafa, und F. Zenke, „Surrogate Gradient Learning in Spiking Neural Networks: Bringing the Power of Gradient-Based Optimization to Spiking Neural Networks“, IEEE Signal Processing 

Magazine, Nov. 2019, doi: 10.1109/MSP.2019.2931595.

[1]
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Spike emission on threshold

Non-differentiability of spiking neuron‘s activation function

requires pseudo derivatives for error backpropagation

=> Simulation and training now

possible in Tensorflow!

Back Propagation Through Time (BPTT)

ෑ
𝑡
𝜎′…𝑊𝑟𝑒𝑐 = 0; 𝜎′ < 1 ∞;𝑊𝑟𝑒𝑐 ≫ 𝜎′

Vanishing gradient!
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2D-FFT algorithm extracts range and velocity of targets from time 

delay and doppler shift of reflected signal 

IFD hand gestures

60 GHz radar

Google Soli hand gestures

F
F

T

4 gestures

12 fine grained gestures
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Hybrid and spiking NNs promise significant gains in energy 

consumption compared to LSTM networks without loss of accuracy

Hybrid Network

Spiking Network IFD Gesture Set Google Soli

Replaced with LSTM 

and Dense in DNN

threshold

encoding

Sequence of

radar images
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Network Layer Architecture With 

Angle 

Input

Neuron 

Type

#Parameters Flops per 

inference

(CNN/LSTM)

Synaptic 

events per 

inference

(inp/hidden)

Accuracy

3D-CNN 8C(1,3,6)K – (1,2,4)P –

12C(1,3,3)K – (1,2,2)P –

64 – 4

Yes CNN & 

FC

59.7k 24.0M CNN

0.11M Dense

95.6

LSTM 2048 – 8 – 4 No LSTM 65.9k 179k 95.4±1.5

6144 – 4 – 4 Yes LSTM 65.6k 226k 40.9±2.3

SNN 2048 – 30 – 4 No LIF 61.6k 141k/787 97.5±0.5

6144 – 10 – 4 Yes LIF 61.5k 60k/335 99.2±0.3

CNN-LSTM 4C3K(2,4)S – 8C3K2S –

35 – 4 

No CNN & 

LSTM

60.4k 1.09M/120k 98.3±0.4

2x[4C3K(2,4)S – 4C3K2S] –

19 – 4 

Yes CNN & 

LSTM

61.8k 2.17M/122k 98.7±0.6

CNN-SNN 4C3K(2,4)S – 8C3K2S –

117 – 4 

No CNN & 

LIF

60.5k 1.09M/0 0/819 98.5±0.4

4C3K(2,4)S – 8C3K2S –

70 – 4

Yes CNN & 

LIF

60.8k 2.17M/0 0/2.5k 97.9±0.8

Radar Gesture Recognition – CNN – LSTM – SNN Comparison

data: P. Gerhards
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Network Layer Architecture With 

Angle 

Input

Neuron 

Type

#Parameters Flops per 

inference

(CNN/LSTM)

Synaptic 

events per 

inference

(inp/hidden)

Accuracy

3D-CNN 8C(1,3,6)K – (1,2,4)P –

12C(1,3,3)K – (1,2,2)P –

64 – 4

Yes CNN & 

FC

59.7k 24.0M CNN

0.11M Dense

95.6

LSTM 2048 – 8 – 4 No LSTM 65.9k 179k 95.4±1.5

6144 – 4 – 4 Yes LSTM 65.6k 226k 40.9±2.3

SNN 2048 – 30 – 4 No LIF 61.6k 141k/787 97.5±0.5

6144 – 10 – 4 Yes LIF 61.5k 60k/335 99.2±0.3

CNN-LSTM 4C3K(2,4)S – 8C3K2S –

35 – 4 

No CNN & 

LSTM

60.4k 1.09M/120k 98.3±0.4

2x[4C3K(2,4)S – 4C3K2S] –

19 – 4 

Yes CNN & 

LSTM

61.8k 2.17M/122k 98.7±0.6

CNN-SNN 4C3K(2,4)S – 8C3K2S –

117 – 4 

No CNN & 

LIF

60.5k 1.09M/0 0/819 98.5±0.4

4C3K(2,4)S – 8C3K2S –

70 – 4

Yes CNN & 

LIF

60.8k 2.17M/0 0/2.5k 97.9±0.8

Radar Gesture Recognition – CNN – LSTM – SNN Comparison

› Parameter count constant

› All ~95-99% at 60k param.

› 3D-CNN way more flops

› ~100k inp. syn. eq. 1M CNN

› ~120k LSTM eq. ~1k syn.
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Do we need FFT-preprocessing or can we use Neural networks to 

extract the relevant information directly from raw radar data?

Antenna 1 Antenna 2 Antenna 3

3 CNN layers

DNN (LSTM) / Hybrid (LIF)

S
a

m
p

le
s

Chirps Chirps Chirps

23 x 32 x 64 x 1px

23 x 32px

Concatenate

3 CNN layers and Global MaxPool

3 CNN layers 3 CNN layers Shared weights

23 x 4 x 4 x 24px

23 x 4 x 4 x 48px
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Radar Gesture SNN implemented on SpiNNaker2 FPGA

Presentation at AICAS 2022, Jiaxin Huang
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› Automotive trends like electric drive and autonomous driving push for AI control and prediction 

applications and other time series data like radar

› E/E-architectures will move from domain to zone architecture to enable hardware complexity 

reduction and allow for abstraction and scalable system architectures (software)

› Control & prediction, as well as radar processing, demanding use of recurrent AI architectures in 

zone controllers – resource and power efficient processing is key

› Applications with spatio-temporal stream and high data rates (radar) could benefit from (sparse) 

spiking neural network processing

› SNN model architecture and training to be co-developed with (generalized) hardware

› SNN benefits have to be demonstrated in practice. Hard- and software concepts to run 

generalized algorithms are to be developed. Standardized frameworks for network architecture 

and training are to be established.

Summary


