

RUHR-UNIVERSITÄT BOCHUM

ACTIVITY-SPARSE INFERENCE AND LEARNING IN RECURRENT NEURAL NETWORKS

Anand Subramoney

Looking beyond biology based models for neuromorphic computing

- Spiking neural networks (SNNs) were developed as models of biological neurons
- SNNs have become the canonical model for neuromorphic computing
- BUT, focus of neuromorphic devices is shifting further towards deep learning applications with higher expectations of task performance
- Are these biologically inspired spiking neural networks optimal for neuromorphic computing?
- We need to design deep learning architectures *ab initio* for neuromorphic computing
 - By distilling the essential advantageous properties of these biological models

RUHR

JNIVERSITÄT

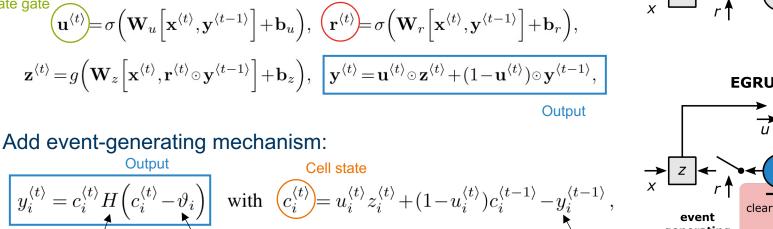
2

What are the key properties of SNNs? aka desiderata for neuromorphic architectures

- **Sparsity** can be in both time (activity) and space (parameters)
 - Activity sparsity activity transmitted only when needed
 - Parameter sparsity activity transmitted only to units that need them
- Event based communication communication happens only through discrete events between units
 - Combined with activity sparsity, units only need to update state on incoming event
- Asynchrony no shared clock signal
- Other properties?

Activity-sparse inference and learning in recurrent neural networks 4

Threshold



Reset gate

Event-based Gated Recurrent Unit (EGRU)

Based on GRU, a very performant recurrent architecture for

GRU Equations:

deep learning.

Heaviside step function

Update gate

Reset

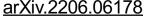
EGRU

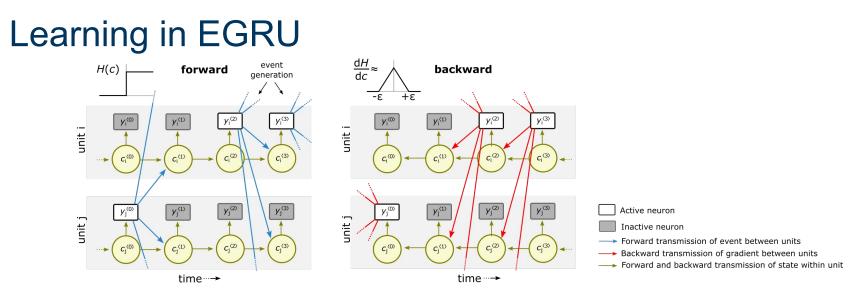
GRU

clear event generating mechanism

RUHR

UNIVERSITÄT BOCHUM





- Use a pseudo-derivative for the non-differentiable threshold function
- Choosing appropriate pseudo-derivative makes BPTT backward pass sparse
- Beyond the support of the pseudo-derivative, gradients are not backpropagated.
 Parameter updates from backpropagation-through-time (BPTT) also sparse!

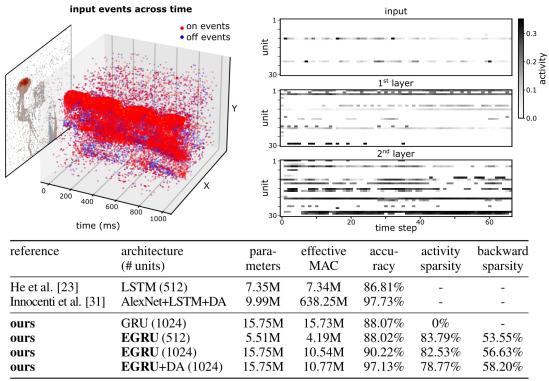
RUHR

UNIVERSITÄT BOCHUM RUR

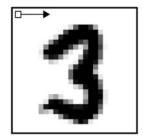
RUHR

UNIVERSITÄT BOCHUM RUB

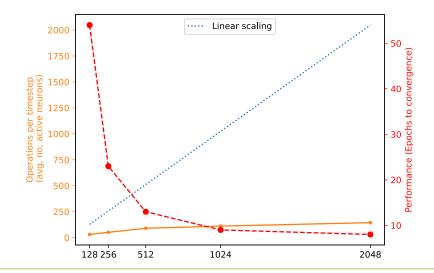
Results: DVS 128 gesture recognition



Results: sequential MNIST image classification



reference	architecture (# units)	r		test accuracy	activity sparsity	
Rusch and Mishra [55]	coRNN (256)	134K	262K	99.4%	-	
Gu et al. [22]	LSTM (512)	1M	1M	98.8%		
ours GRU (590) ours EGRU (590)		1M	1M	98.8%	-	
		1M	226K	98.3%	72.1%	



RUHR

UNIVERSITÄT BOCHUM RUB

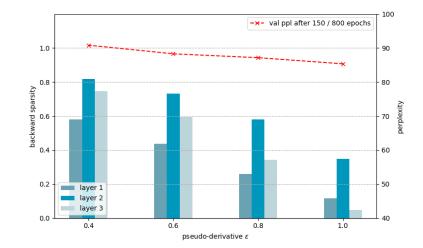
Scaling:

- Operations per timestep remains almost constant with network size for given task
- Larger networks converge faster

Results: Language Modelling

Dataset: PennTreeBank Metric: Perplexity (lower is better)

reference	architecture (# units)	para- meters	effective MAC	validation	test	activity sparsity
Gal et al. [18]	Variational LSTM	24M	-	77.3	75.0	-
Melis et al. [45]	1 layer LSTM	24M	-	61.8	59.6	-
Merity et al. [46]	AWD-LSTM	24M	24M	60.0	57.3	-
ours	GRU (1350)	24M	24M	75.1	71.1	-
ours	EGRU (1350)	24M	5.4M	68.6	65.6	87.3%
ours	EGRU (2700)	76M	8.4M	69.7	66.6	91.2%



EGRU can also be written in continuous time

GRU equations are forward Euler equations of a continuous time model

$$\begin{split} \mathbf{y}^{\langle t \rangle} &= \mathbf{u}^{\langle t \rangle} \odot \mathbf{z}^{\langle t \rangle} + (1 - \mathbf{u}^{\langle t \rangle}) \odot \mathbf{y}^{\langle t - 1 \rangle} \\ \Leftrightarrow & \mathbf{y}^{\langle t \rangle} - \mathbf{y}^{\langle t - 1 \rangle} = -\mathbf{u}^{\langle t \rangle} \odot \mathbf{y}^{\langle t - 1 \rangle} + \mathbf{u}^{\langle t \rangle} \odot \mathbf{z}^{\langle t \rangle} \\ \xrightarrow{\text{limit}} & \dot{\mathbf{y}}(t) = -\mathbf{u}(t) \odot (\mathbf{y}(t) - \mathbf{z}(t)) \end{split}$$

Adding activations ("synaptic currents") a and separating internal state c from output y, we get:

$$\tau_m \dot{\mathbf{c}}(t) = \mathbf{u}(t) \odot (\mathbf{z}(t) - \mathbf{c}(t)) = F(t, \mathbf{a}_u, \mathbf{a}_r, \mathbf{a}_z, \mathbf{c}),$$

With the gates defined as:

 $\mathbf{u}(t) = \sigma(\mathbf{a}_u(t)), \quad \mathbf{r}(t) = \sigma(\mathbf{a}_r(t)), \quad \mathbf{z}(t) = g(\mathbf{a}_z(t)),$

with dynamics $\tau_s \dot{\mathbf{a}}_{\mathrm{X}} = -\mathbf{a}_{\mathrm{X}} - \mathbf{b}_{\mathrm{X}}, \quad \mathrm{X} \in \{u, r, z\}$

Events in continuous time EGRU

Internal event no. *k* is triggered when $c_{n_k}(s_k)$ reaches threshold ϑ_n at time s_k (.⁻ and .⁺ denote *before* and *after* event)

$$egin{aligned} c^-_{n_k}(s_k) &= artheta_{n_k}\,, \quad c^+_{n_k}(s_k) &= 0 \ c^+_m(s_k) &= c^-_m(s_k) \end{aligned}$$

Activations ("synaptic currents") are updated as:

$$a_{\mathsf{X},m}^+(s_k) = a_{\mathsf{X},m}^-(s_k) + v_{\mathsf{X},mn_k} \times r_{n_k} \times c_{n_k}^-(s_k)$$

for $\mathsf{X} \in \{u, r, z\}$.

Input events have comparable updates

Event-based gradient descent rule

similar to event-prop

Writing the loss as:
$$\mathcal{L} = \int_{0}^{T} \left[\underbrace{\ell_{c}(\mathbf{c}(t),t)}_{\text{loss}} + \underbrace{\lambda_{c} \cdot (\tau_{m} \, \dot{\mathbf{c}}(t) - F(t, \mathbf{a}_{u}, \mathbf{a}_{r}, \mathbf{a}_{z}, \mathbf{c}))}_{\text{cell state adjoint}} + \sum_{\mathbf{X} \in \{u, r, z\}} \underbrace{\lambda_{a_{\mathbf{X}}} \cdot (\tau_{s} \, \dot{\mathbf{a}}_{\mathbf{X}} + \mathbf{a}_{\mathbf{X}} + \mathbf{b}_{\mathbf{X}})}_{\text{activation adjoints}} \right] dt$$

$$\mathbf{X} \in \{u, r, z\}$$
The adjoint dynamics are ODEs:
$$\tau_{m} \dot{\boldsymbol{\lambda}}_{c} = \left(\frac{\partial F}{\partial \mathbf{c}}\right)^{T} \boldsymbol{\lambda}_{c}$$
with
$$\lambda_{c}(T) = 0$$

$$\tau_{s}\dot{\boldsymbol{\lambda}}_{a_{X}} = \left(\frac{\partial F}{\partial \mathbf{a}_{X}}\right)^{T}\boldsymbol{\lambda}_{c} + \boldsymbol{\lambda}_{a_{X}} \qquad \text{with} \quad \boldsymbol{\lambda}_{a_{X}}(T) = 0$$

And gradient updates (event-based) can be written as:

$$\Delta w_{\mathbf{X},ij} = \frac{\partial}{\partial w_{\mathbf{X},ij}} \mathcal{L}(\mathbf{W}) = \sum_{k} \xi_{\mathbf{X},ijk}. \qquad \boldsymbol{\xi}_{\mathbf{X},k} = -\tau_s \left(\mathbf{r}_{\mathbf{X}}^-(s_k) \odot \mathbf{c}^-(s_k) \right) \otimes \boldsymbol{\lambda}_{a_{\mathbf{X}}}^+(s_k),$$

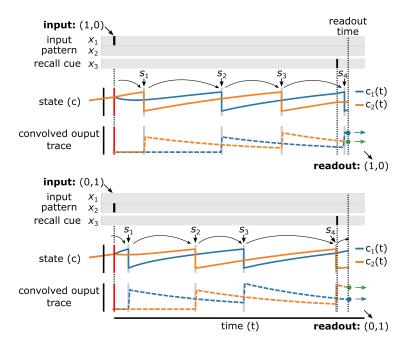
Preliminary results: Delay-copy

Delay copy task:

- Binary input pattern shown
- Output read out after recall cue

Network events convolved into trace for output

Trained with cross entropy loss to reach perfect recall



RUHR

UNIVERSITÄT BOCHUM RUB

EGRU:

- Is a general event-based recurrent neural network architecture
- Exhibits high activity-sparsity as well as sparse learning updates
- Can be written in continuous time form that
 - supports event-based gradient descent updates
 - lends itself to rigorous mathematically analysis
- Can potentially replace SNNs for challenging and complex tasks

Outlook

- Explore other unit dynamics that is appropriate to different use-cases based on architectures that are
 - known to work well
 - a good fit for neuromorphic devices
 - E.g. non-binary packets for communication
- More efficient software implementations of such general event-based models
- Implementation on SpiNNaker 2 (and others?) and hopefully scale up to way more parameters and units

Joint work with

Khaleelulla Khan Nazeer PhD student TU Dresden

Mark Schöne

Christian Mayr

David Kappel

RUHR

BOCHUM

UNIVERSITÄT

RUB

PhD student TU Dresden Professor TU Dresden Post-doc RUB Bochum

Subramoney, A., Nazeer, K.K., Schöne, M., Mayr, C., Kappel, D., 2022. EGRU: Event-based GRU for activity-sparse inference and learning. <u>https://doi.org/10.48550/arXiv.2206.06178</u> Thank you. Questions?

