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A framework for computing over distributed representations, 
with connections to…

Kernel methods in
machine learning

Factorizable 
image encodings

Modeling in 
neuroscience



Our work highlights and extends work in 
Vector Symbolic Architectures (VSA) / 
Hyperdimensional Computing (HDC)

3Frady, E.P., Sommer, F.T. (2019) Robust computation with rhythmic spike patterns. PNAS 116(36) 18050-59.

VSA/HDC related papers per year



Vector Symbolic Architectures provide a principled framework 
for computing with distributed representations

𝑎 + 𝑏 ∶ 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
(vector sum)

𝑎 ⊙ 𝑏 ∶ 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(element-wise multiplication)

𝜌 𝑎 ∶ 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(cyclic shift, permutation)

𝑎, 𝑏, 𝑐 … = 𝑉!
(i.i.d. random vectors)

𝑎𝑇𝑏 ∶ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
(inner product)

!
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Binary Bipolar Real Complex

Binary spatter code 
(Kanerva, 1996)
Binary sparse distributed 
code (Rachkovskij, 2001)

Multiply, Add, Permute 
(Gayler, 1998)
Hyperdimensional 
Computing (Kanerva, 
2009)

Holographic Reduced 
Representation (Plate, 
1991)
Matrix binding with 
additive terms (Gallant & 
Okaywe, 2013) 

Fourier Holographic 
Reduced Representations 
(Plate, 2003)



Maximum separation of  symbols with orthogonal representations:

Good separation with i.i.d. pseudorandom representations:

A kernel perspective on symbolic VSA
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VSA can represent data structures with high-dimensional vectors

𝑠 = 𝑥 ⊙ 𝑎 + 𝑦⊙ 𝑏 + 𝑧 ⊙ 𝑐

Hash Table: Sequence:

𝑠 = 𝑘 ⊙ 𝑎 + 𝜌(𝑘) ⊙ 𝑏 + 𝜌!(𝑘) ⊙ 𝑐

Tree:

𝑠 = 𝑙 ⊙ 𝑎 + 𝑟 ⊙ 𝜌(𝑙 ⊙ 𝑏) + 𝑟 ⊙ 𝜌(𝑟 ⊙ 𝑐)
𝑎

𝑏 𝑐

2-D Space/Matrix:
𝑎 𝑐

𝑏𝑠 = 𝑥 ⊙𝑦⊙𝑎 + 𝑥⊙𝜌 𝑦 ⊙𝑏 + 𝜌 𝑥 ⊙𝑦⊙ 𝑐

𝑠 = 𝑎⊙𝜌 𝑏 + 𝑎⊙𝜌 𝑐 + 𝑐 ⊙ 𝜌 𝑏 + 𝑏⊙𝜌(𝑎)

Graph:

𝑎 𝑏

𝑐
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A randomizing encoding function:

such that:
(i) Inner product forms a kernel:

(ii) Translation is computed by binding: 

Kernel locality preserving encoding (KLPE)
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Important Results from Functional Analysis
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(1) Inner product kernels define a reproducing kernel Hilbert space:

(2) The kernel shape is defined by the Fourier transform of a probability distribution:



Vector Function Architecture (VFA = VSA + KLPE)

The function:

Is represented by the vector:

FPE with Hadamard product binding:
(complex-valued)

FPE with Circular convolution binding:
(real-valued)

Block-local circular convolution:
(sparse) 9



VFAs with uniformly sampled base vectors 
result in a sinc kernel

https://en.wikipedia.org/wiki/Sinc_function
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Theorem 2: Assume an FPE with a uniformly 
sampled base vector, which is the typical 
procedure for sampling VSA vectors. For a 
Hadamard FPE, this means the phases of the base 
vector are sampled from the uniform phase 
distribution. The FPE then induces a VFA which is 
the RKHS of band-limited continuous functions, 
independent of the underlying realization of the 
binding operation. Specifically, the kernel of FPE 
is the sinc function, which defines the RKHS of the 
band-limited continuous functions. 

https://en.wikipedia.org/wiki/Sinc_function


Approximating functions with sinc

https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula

Function Representation in VFA
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https://en.wikipedia.org/wiki/Whittaker%E2%80%93Shannon_interpolation_formula


Manipulating functions with VFA

• Point-wise readout of a function

• Point-wise addition

• Function shifting

• Function convolution

• Overall similarity between functions
12



Application: regression with sinc kernels
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Application: Kernel density estimation in VFA
Density estimation with band-limited functions (Agarwal et al. 2017):  
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Phase distribution of the base vector 
determines similarity kernel
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Application: Representing images in VFA
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Relating VSA principles to neural coding 

Frady, E.P., Sommer, F.T. (2019) Robust computation with rhythmic spike patterns. PNAS 116(36) 18050-59.
M. Laiho, et al., “High-Dimensional Computing with Sparse Vectors,” IEEE Biomedical Circuits and Systems 

Conference (BioCAS), 2015. 
E. P. Frady, et al., “Variable Binding for Sparse Distributed Representations: Theory and Applications,” IEEE 

Transactions on Neural Networks and Learning Systems, 2021.
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Mapping complex-valued vectors to spike timing codes

Sparse Block Codes provide a sparse 
implementation of VSA/VFA



An encoding model of hippocampus 
predicts place fields and phase precession

Phase-Precession

Place Fields

Mouse Location

Neural Activity
Readout

18Frady, P., Kanerva, P., & Sommer, F. (2018). A framework for linking computations and rhythm-based timing patterns in neural firing, such as phase
precession in hippocampal place cells. In Proceedings of the Conference on Cognitive Computational Neuroscience.



Key Takeaways
• A unified framework for reasoning about symbols and real 

values with distributed representations (extending VSA -> VFA)
• Kernel methods in machine learning can now be integrated with 

VSA methods.
• Predictions for neural coding principles and single-cell 

representations (e.g., in hippocampus).
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