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Research Goal

Ø Cognition involves accessing and performing inference over complex, structured knowledge
o Capture knowledge, represent it, perform inference over it
o Graphs are a natural representation of such sparse information 

Ø Research goal: explore the mapping of graphs to basic cortical like arrays
o Start with a simplified cortical model - incrementally add cortical characteristics
o Sparse, distributed data representations
o Competing objective functions:

‒ Increased mapping quality amb performance on standard graph queries (here label inference)
‒ Connectivity amb number and length of connections

Ø Most real-world graphs (semantic, knowledge, social networks, …) have small world/scale free characteristics
o A scale-free network is a network whose degree distribution follows a power law
o In a small-world network the typical distance between two randomly chosen nodes grows according to log(N)
o Has been observed in neural circuits
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Ø What role does cortical interconnect architecture play in cortical 
functionality?

Ø Connections are expensive in biology

Ø Cortex has, most likely found the “minimum” connectivity - number 
and length of connections - required by cortex to do its job

Ø “A universal scaling law between gray matter and white matter of 
cerebral cortex,” K. Zhang and T. Sejnowski, PNAS, May 9, 2000, Vol. 
97 No. 10 5621–5626
o Neocortex has a similar layered architecture in species over a wide range 

of brain sizes
o Larger brains => longer fibers to communicate between distant cortical 

areas
o White matter volume increases disproportionally (4/3 power) faster than 

gray matter volume
o Power law accounts for empirical data spanning several orders of 

magnitude in brain sizes for various mammalian species
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Cortical Interconnect Architecture



Hammerstrom

Current Approaches (Deep Neural Networks)

Ø Deep Network architectures for “graph embedding” Graph Neural networks (GNNs):Node2Vec, Graph2Vec, 
TransE, RecGNNs, Graph Convolutional Neural Networks

Ø Gradient descent results in broad data distributions
o Representing sparse graphical relationships can be less efficient

Ø Other disadvantages: long training times, scalability, the need to retrain when there is new information

Ø Biological inspired algorithms address some of these disadvantages
o Numenta’s “complementary sparseness”: sparse interconnect and sparse activation
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"Representation Learning on Graphs: Methods and Applications",
W. Hamilton, et al., Department of Computer Science Stanford University.
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Cognitive Graph (COG)

Ø A source graph is read into the system and an internal data structure, 
COG, is created

Ø Graph data sets used (labeled directed graphs)
o adjnoun (A network of word adjacencies of common adjectives and nouns in 

the novel "David Copperfield" by Charles Dickens)
o webkb-wisc (A dataset that includes web pages from computer science 

departments of various universities)
o CORA (A dataset of scientific publication citations classified into one of seven 

classes)
o Human Protein Interaction (A protein-protein interaction network for Homo 

Sapiens, where nodes represent proteins, and edges indicate the biological 
interaction between a pair of proteins)
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CORA
https://graphsandnetworks.com/the-cora-dataset/
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Cortical Graph (COR)

Ø The COR is constructed via a random walk through the COG (rapid learning)
o Random walks (from Node2Vec*) with a weighted balance DFS (depth first search) and BFS (breadth 

first search)

Ø The cortical network consists of a 2D XY grid of “columns”

Ø Each column has some number of minicolumns (COR nodes)
o During the random walk k minicolumns (k-SDR) recruited for each COG node (constrained random)
o Axons are recruited randomly: a minicolumn can connect, on average, to Pa (axon connection density) 

other minicolumns (we use 1-5%)
o Single layer columns, single level XY grid

Ø The COR representations of the COG nodes constitute a very sparse “graph embedding”

Ø Synaptic (edge) weights for the COR nodes are determined by simple Hebbian learning 
during the random walk
o Are labels correlated or anti-correlated (can be + or -)

Ø The simulator allows for a range of COR allocation and interconnect techniques
o SISO – Similar Input Similar Output (Representation)
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*node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec, ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016.



COR Node Allocation
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Graph Query: Label Inference

Ø COR nodes in each COG node’s COR k-SDR share the same label

Ø For label inference, 50% of the nodes in each graph have their labels 
removed
o These are then inferred from the remaining labels

Ø Label likelihoods (“beliefs”) are propagated through the network
o Likelihood propagation via message passing
o Nodes accumulate label log likelihoods from neighbor nodes
o COR: subsets of identically labeled nodes form cell assemblies, reinforcing 

each other “resonance”

Ø A standard label inference (node classification) algorithm
o Node Classification in Social Networks, S. Bhagat et al.
o No “high order information” (homophily) factored into process
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Xiao, S., Wang, S., Dai, Y. et al. Graph
neural networks in node classification:
survey and evaluation. Machine Vision
and Applications 33, 4 (2022)



Preliminary Results
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Data Set adjnoun webkb CORA
Human Protein 

(PPI)
Cognitive graph 
(nodes/edge/labels) 112/425/2 265/822/5 3264/4536/7 3890/76584/50

Cortical graph (nodes/edge) 1024/1349 16384/1687 16384/3456 262K/49K

Cognitive graph, Macro-F 99% 77% 90% 10%

Node2Vec, Macro-F 83% 63% 75% 18%

Cortical graph, Macro-F 95% 88% 86% 83% 90% 82% 76%

Cortical graph. Connectivity 5% 1% 5% 1% 5% 1% 1%

Connection Effectiveness 0.49 0.84 0.31 0.45 0.33 0.38 1.43
• adjnoun k=4, all others k=8
• Connection effectiveness, which is only computed for the Cortical graph, is 

the network performance (Macro-F1 score) divided by the mean 
connections per node times the mean connection length

Example of cell assembly resonance
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Next Steps

Ø COR architecture:
o More “physical” diffusion model of label belief
o Numenta-like dendritic segments that capture “higher order” information (homophily)
o Multi-level hierarchies that capture more graph structure
o Belief propagation by spikes
o More complex multi-layered columns
o Analysis to drive architecture
o Investigate functional implications of Small World and Scale Free networks

Ø Expand the tasks, a wider variety of graph queries
o Label inference (node classification, NC), given a partly labeled graph, infer or classify the unlabeled 

nodes
o Edge inference (link prediction or graph completion), remove edges from a learned graph, infer missing 

edges
o PageRank (PR) Used extensively in graph search
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