"Hierarchical graph embedding in vector space by graph pyramid," S. Mousav, et al.

NICE 2022 Lightning talk: Graph Embedding Using Cortical Like Sparse Distributed Representations

DAN HAMMERSTROM (PORTLAND STATE) dwh@pdx.edu

DMITRI NIKONOV (INTEL)

MOHAMED ABIDALREKAB (PORTLAND STATE)

This work was supported in part by the Center for Brain Inspired Computing (C-BRIC), one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored by DARPA.

Research Goal

- Cognition involves accessing and performing inference over complex, structured knowledge
 - Capture knowledge, represent it, perform inference over it
 - Graphs are a natural representation of such sparse information
- Research goal: explore the mapping of graphs to basic cortical like arrays
 - o Start with a simplified cortical model incrementally add cortical characteristics
 - o Sparse, distributed data representations
 - Competing objective functions:
 - Increased mapping quality amb performance on standard graph queries (here label inference)
 - Connectivity amb number and length of connections
- > Most real-world graphs (semantic, knowledge, social networks, ...) have small world/scale free characteristics
 - o A scale-free network is a network whose degree distribution follows a power law
 - In a small-world network the typical distance between two randomly chosen nodes grows according to log(N)
 - Has been observed in neural circuits

Cortical Interconnect Architecture

- What role does cortical interconnect architecture play in cortical functionality?
- Connections are expensive in biology
- Cortex has, most likely found the "minimum" connectivity number and length of connections - required by cortex to do its job
- "A universal scaling law between gray matter and white matter of cerebral cortex," K. Zhang and T. Sejnowski, PNAS, May 9, 2000, Vol. 97 No. 10 5621–5626
 - Neocortex has a similar layered architecture in species over a wide range of brain sizes
 - Larger brains => longer fibers to communicate between distant cortical areas
 - White matter volume increases disproportionally (4/3 power) faster than gray matter volume
 - Power law accounts for empirical data spanning several orders of magnitude in brain sizes for various mammalian species

$$W = \frac{c}{T} G^{4/3}$$

Current Approaches (Deep Neural Networks)

Deep Network architectures for "graph embedding" Graph Neural networks (GNNs):Node2Vec, Graph2Vec, TransE, RecGNNs, Graph Convolutional Neural Networks

- Gradient descent results in broad data distributions
 - Representing sparse graphical relationships can be less efficient
- > Other disadvantages: long training times, scalability, the need to retrain when there is new information

Hammerstrom

- Biological inspired algorithms address some of these disadvantages
 - o Numenta's "complementary sparseness": sparse interconnect and sparse activation

4

Cognitive Graph (COG)

- A source graph is read into the system and an internal data structure, COG, is created
- Graph data sets used (labeled directed graphs)
 - <u>adjnoun</u> (A network of word adjacencies of common adjectives and nouns in the novel "David Copperfield" by Charles Dickens)
 - webkb-wisc (A dataset that includes web pages from computer science departments of various universities)
 - <u>CORA</u> (A dataset of scientific publication citations classified into one of seven classes)
 - <u>Human Protein Interaction</u> (A protein-protein interaction network for Homo Sapiens, where nodes represent proteins, and edges indicate the biological interaction between a pair of proteins)

CORA https://graphsandnetworks.com/the-cora-dataset/

Cortical Graph (COR)

- The COR is constructed via a <u>random walk</u> through the COG (rapid learning)
 - Random walks (from Node2Vec*) with a weighted balance DFS (depth first search) and BFS (breadth first search)
- The cortical network consists of a 2D XY grid of "columns"
- Each column has some number of minicolumns (COR nodes)
 - During the random walk *k* minicolumns (*k*-SDR) recruited for each COG node (constrained random)
 - Axons are recruited randomly: a minicolumn can connect, on average, to P_a (axon connection density) other minicolumns (we use 1-5%)
 - Single layer columns, single level XY grid
- The COR representations of the COG nodes constitute a very sparse "graph embedding"
- Synaptic (edge) weights for the COR nodes are determined by simple Hebbian learning during the random walk
 - Are labels correlated or anti-correlated (can be + or -)
- > The simulator allows for a range of COR allocation and interconnect techniques
 - o SISO Similar Input Similar Output (Representation)

*node2vec: Scalable Feature Learning for Networks. A. Grover, J. Leskovec, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2016.

COR Node Allocation

Graph Query: Label Inference

COR nodes in each COG node's COR k-SDR share the same label

- For label inference, 50% of the nodes in each graph have their labels removed
 - o These are then inferred from the remaining labels
- Label likelihoods ("beliefs") are propagated through the network
 - o Likelihood propagation via message passing
 - o Nodes accumulate label log likelihoods from neighbor nodes
 - COR: subsets of identically labeled nodes form *cell assemblies*, reinforcing each other "resonance"

Hammerstrom

- A standard label inference (node classification) algorithm
 - Node Classification in Social Networks, S. Bhagat et al.
 - No "high order information" (homophily) factored into process

Xiao, S., Wang, S., Dai, Y. *et al.* Graph neural networks in node classification: survey and evaluation. *Machine Vision and Applications* **33**, 4 (2022)

Preliminary Results

Data Set	adjnoun		webkb		CORA		Human Protein (PPI)
Cognitive graph (nodes/edge/labels)	112/425/2		265/822/5		3264/4536/7		3890/76584/50
Cortical graph (nodes/edge)	1024/1349		16384/1687		16384/3456		262K/49K
Cognitive graph, Macro-F	99%		77%		90%		10%
Node2Vec, Macro-F	83%		63%		75%		18%
Cortical graph, Macro-F	95%	88%	86%	83%	90%	82%	76% 🔶
Cortical graph. Connectivity	5%	1%	5%	1%	5%	1%	1%
Connection Effectiveness	0.49	0.84	0.31	0.45	0.33	0.38	1.43

• adjnoun k=4, all others k=8

 Connection effectiveness, which is only computed for the Cortical graph, is the <u>network performance</u> (Macro-F1 score) divided by the <u>mean</u> <u>connections per node</u> times <u>the mean connection length</u> Example of cell assembly resonance

Next Steps

- > COR architecture:
 - More "physical" diffusion model of label belief
 - Numenta-like dendritic segments that capture "higher order" information (homophily)
 - o Multi-level hierarchies that capture more graph structure
 - Belief propagation by spikes
 - o More complex multi-layered columns
 - Analysis to drive architecture
 - o Investigate functional implications of Small World and Scale Free networks
- Expand the tasks, a wider variety of graph queries
 - <u>Label inference</u> (node classification, NC), given a partly labeled graph, infer or classify the unlabeled nodes
 - Edge inference (link prediction or graph completion), remove edges from a learned graph, infer missing edges
 - PageRank (PR) Used extensively in graph search

