

Associate Professor, Computer Science University of British Columbia

Materials Matter: How biologically inspired alternatives to conventional neural networks improve meta-learning and continual learning

> Jeff Clune @jeffclune

Research Team Leader OpenAl

Evolution of Structural Organization

Modularity Hierarchy

Modularity

- Localization of function in an encapsulated unit (Lipson 2007)
- Enables increased
 - Complexity
 - Adaptability

Car (spark plug, muffler, wheel), bodies (organs), brains, software, etc.

Modularity

- Rare in previous neuroevolution

Suggests selection on performance alone does not produce modularity

Kashtan and Alon 2005

Evolutionary Origins of Modularity

Jeff Clune

Clune, Mouret, & Lipson, Proc. Royal Society, 2013

Jean-Baptiste Mouret

Hod Lipson

Retina Problem

Kashtan and Alon. PNAS. 2005

Why does modularity evolve?

- Selection to minimize connection costs

Hypothesis from founding neuroscientist (Ramón y Cajal 1899)

Performance Alone (PA) Performance & Connection Costs (P&CC)

Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society

• Significantly more evolvable (P < 0.0001)

Clune, Mouret, & Lipson. 2013. Proceedings of the Royal Society

• P&CC significantly more modular, higher-performing (P < 0.0001) • Perfect decomposition in 56% of P&CC, never for PA ($_P < 0.0001$)

Evolution of Structural Organization

Modularity Hierarchy

Hierarchy

- recursive composition of lower-level units (Lipson 2007)
- important principle in brains
- also doesn't occur in evolution by default

Mengistu, Huizinga, Mouret & Clune. 2016. PLoS Comp. Bio.

Evolutionary Origins of Hierarchy

Henok Mengistu

Hypothesis: Connection Costs also Cause Hierarchy

- Hierarchical networks are
 - sparse
 - composed of nested modules

2016. PLoS Comp. Bio.

Joost Huizinga Jean-Baptiste Mouret

Jeff Clune

Mengistu, Huizinga, Mouret & Clune. 2016. PLoS Comp. Bio. To appear.

Without a Connection Cost

With a Connection Cost

- Describe alternatives to conventional neural networks loosely inspired by biology
 - that can improve meta-learning, continual learning
- Deep dives
 - Differentiable Hebbian Plasticity
 - Differentiable Neuromodulated Hebbian Plasticity ("backpropamine")
 - ANML

Meta-Learning Algorithms

- Two major camps
 - Meta-learn good initial weights + SGD
 - e.g. MAML, Finn et al. 2017
 - Meta-learn RNN, which creates its own learning algorithm
 - Learning to Reinforcement Learn, Wang et al. 2016
 - RL^2 , Duan et al. 2016

TERRENCE SEJNOWSKI, PhD, WITH ALISTAIR McCONVILLI

Meta-Learning Algorithms

- Two major camps
 - Meta-learn good initial weights + SGD
 - e.g. MAML, Finn et al. 2017
 - Meta-learn RNN, which creates its own learning algorithm
 - Learning to Reinforcement Learn, Wang et al. 2016
 - RL², Duan et al. 2016

• Outer loop: optimize RNN with parameters θ for "lifetime" performance

• Inner loop: run θ (with reward as input)

• Et voila!

- It learns an entire RL algorithm
- Theoretically can learn any RL algorithm

 A_{t}

Recurrent Neural Network

(a) Labryinth I-maze

Mirowski et al. 2016, Wang et al. 2016

Learns to

- explore
- exploit
- all on its own!

LRL

(a) Two-step task

(b) Model predictions

Wang et al. 2016

LRL

Learns to

- build a model
- plan
- all on its own!

Rubik's Cube

- Identifies properties of the world
 - friction, mass of cube, size of cube, etc.
- Exploits that information

OpenAl et al. 2019

Materials Matter

- Still have to decide the materials of the network
- RNNs forced to do all lifetime learning with activations
 - may be unstable
 - proposal: store information in weights too

Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation Miconi, Clune, Stanley. ICML. 2018

Ken Stanley

Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation Miconi, Clune, Stanley. ICML. 2018

- Can store info in weights (in addition to activations)
- Hebbian learning (trained via SGD)

ddition to activations) SGD)

Hebbian Learning

neurons that fire together, wire together

- many capabilities
 - unsupervised learning (e.g. PCA)
 - associative recall

 $W_{ii}^{t+1} = W_{ii}^t + \eta x_i^t x_i^t$

Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation Miconi, Clune, Stanley. ICML. 2018

- Recurrent, Hebbian network
 - inner loop: network updates with no SGD

$$part \quad part$$

$$y_j = \tanh \left\{ \sum_{i \in inputs} (w_{i,j} + \alpha_{i,j} \mathbf{H}_{i,j}(t)) y_i \right\}$$

$$\mathbf{H}_{i,j}(t+1) = \eta \ y_i \ y_j + (1-\eta) \ \mathbf{H}_{i,j}(t)$$

fixed

outer loop: differentiate through episode, update trainable parameters via SGD

plastic

$\mathcal{W}_{i,i}$ $\alpha_{i,i}$

Trainable parameters, optimized by SGD to maximize lifetime/ episode reward

> $H_{i,j}$ Lifetime quantity (init=0)

Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation Miconi, Clune, Stanley. ICML. 2018

Near then-SOTA on Omniglot

Table 1: Results for the 5-way, 1-shot omniglot tasks, including recent reported results and the new differentiable plasticity (DP) result (\pm indicates 95% CI). Note that these reports describe widely varying approaches and model sizes (see text).

VINYALS ET AL.	SNELL ET AL.	FINN ET AL.	MISHRA ET AL.	DP
(MATCHING NETWORKS)	(PROTONETS)	(MAML)	(SNAIL)	(OURS)
(VINYALS ET AL., 2016)	(SNELL ET AL., 2017)	(FINN ET AL., 2017)	(MISHRA ET AL., 2017)	
98.1 %	97.4%	$98.7\% \pm 0.4\%$	99.07% ± 0.16	$98.5\%\pm0.57$

Differentiable Hebbian Plasticity Miconi, Clune, Stanley, ICML 2018

Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation Miconi, Clune, Stanley. ICML. 2018

- 2M+ parameters

Image reconstruction: learn (memorize) an image, reconstruct it

LSTMs cannot solve this

Differentiable Hebbian Learning

Differentiable plasticity: training plastic neural networks with backpropagation Miconi, Clune, Stanley. ICML. 2018

Maze Navigation

Episode 500,000

Episode 0

Learned to Explore & Exploit (Better)

- Hebbian learning is local (hard optimization problem)
- Better: turn learning on in some weights only in certain contexts • e.g. if I am playing chess AND I just won, THEN:
 - - increase learning in only chess playing parts of the brain

Differentiable Neuromodulated Plasticity "Backpropamine": Miconi, Rawal, Clune, Stanley, ICLR, 2018

Differentiable Neuromodulated Plasticity "Backpropamine": Miconi, Rawal, Clune, Stanley, 2018

Hebbian Learning

 $x_j(t) = \sigma \left\{ \sum (w_{i,j} + \alpha_{i,j} \operatorname{Hebb}_{i,j}(t)) x_i(t-1) \right\}$ $i \in inputs to j$ $\operatorname{Hebb}_{i,j}(t+1) = \operatorname{Clip}(\operatorname{Hebb}_{i,j}(t) + \eta x_i(t-1)x_j(t)),$

Neuromodulated Hebbian Learning

part $\operatorname{Hebb}_{i,j}(t+1) = Clip(\operatorname{Hebb}_{i,j}(t) + M(t)x_i(t-1)x_j(t))$

new

 $\operatorname{Hebb}_{i,j}(t+1) = Clip(\operatorname{Hebb}_{i,j}(t) + M(t)E_{i,j}(t))$ $E_{i,j}(t+1) = (1-\eta)E_{i,j}(t) + \eta x_i(t-1)x_j(t)).$

Eligibility Trace Version

Differentiable Neuromodulated Plasticity "Backpropamine": Miconi, Rawal, Clune, Stanley, 2018

Simple Task network says if one of the symbols just shown is the secret symbol

Ba LS LST

Model	Test Perplexity
aseline LSTM (Zaremba et al., 2014)	104.26 ± 0.22
LSTM with Differential Plasticity	103.80 ± 0.25
STM with Simple Neuromodulation	102.65 ± 0.30
M with Retroactive Neuromodulation	102.48 ± 0.28

Word prediction, Penn-Tree Bank

p < 0.05 NM vs. Non

Learning to Continually Learn

Shawn Beaulieu

Lapo Frati

Jeff Clune*

Joel Lehman

Thomas Miconi

Ken Stanley

ECAI 2020

Nick Cheney*

Catastrophic Forgetting

- Achilles Heel of machine learning
- In sequential learning
 - Learn task A, then learn task B
 - ML overwrites A when learning B
 - forgets catastrophically
 - Animals, including humans
 - pick up where we left off ightarrow
 - forget gradually
- Must solve catastrophic forgetting to continually learn

Many Proposed Solutions: All Manual

- Rehearsal techniques
- Pseudo-patterns
- Activation sharpening
- Sparse representations
- Progressive networks
- Elastic weight consolidation
- PathNet
- Intelligent synapses

- Experience replay
- Generative replay
- Progress & Compress
- etc.

Many Proposed Solutions: All Manual

- Rehearsal techniques
- Pseudo-patterns
- Activation sharpening
- Sparse representations
- Progressive networks
- Elastic weight consolidation
- PathNet
- Intelligent synapses

- Experience replay
- Generative replay
- Progress & Compress
- etc.
Frequent Manual Path Philosophy

- Optimize for one thing and hope for in other
 - e.g. optimize for sparse representations, hope for decreased catastrophic forgetting

Meta-Learning Philosophy

- Don't optimize for one thing and hope for another
- Optimize for what you want

Hypothesis

 There's a good chance humans are not smart enough to manually build systems that continually learn well

Proposal: Use meta-learning to learn to continually learn

- Optimize for we what
 - Learn a sequence of tasks
 - Be good on all of them at the end

Meta-Learning Algorithms

- Two major camps
 - Meta-learn good initial weights + SGD
 - e.g. MAML, Finn et al. 2017
 - Meta-learn RNN, which creates its own learning algorithm
 - Learning to Reinforcement Learn, Wang et al. 2016
 - RL², Duan et al. 2016
 - OpenAl et al. 2019, Rubik's Cube

Meta-Learning Algorithms

- Two major camps
 - Meta-learn good initial weights + SGD
 - e.g. MAML, Finn et al. 2017
 - Meta-learn RNN, which creates its own learning algorithm
 - Learning to Reinforcement Learn, Wang et al. 2016
 - RL², Duan et al. 2016
 - OpenAl et al. 2019, Rubik's Cube

"meta-training"

"meta-training"

-training (outer-loop learning) meta

"meta-testing"

meta-learning for continual, multi-task learning

Online-aware Meta-Learning (OML)

Javed & White, NeurIPS, 2019

- learning
- we were
 - inspired by it
 - compare to it

validates the vision of meta-learning solutions to continual

meta-learn then freeze representation, SGD for PLN

- Performs well
 - After sequentially training on 150 classes of Omniglot
 - 97% on meta-test training set (near-perfect memorization)
 - ~63% on meta-test test set (worse at generalizing, but still impressive)
- Learns a sparse representation

- Gets a lot right
- But is still ultimately subject to SGD
 - which was not optimized for continual learning
 - has to find a representation that avoids CF when SGD is applied

We propose: allowing control over SGD via neuromodulation

Can we do better?

Traditional Neuromodulation

- NM neurons change learning rates in other neurons
- Enables data-dependent, thus task-specific, learning

Neuromodulation Solves CF on Simple Networks & Problems

- Velez & Clune. 2017. PLoS One

Ellefsen KO, Mouret JB, Clune J. 2015. PLoS Computational Biology

Scaling Traditional Neuromodulation

- Struggled to scale it up
- Insight (Shawn Beaulieu)
 - maybe it is because the forward pass is not affected
 - thus forward-pass interference still exists

Soltoggio et al. (2008)

Activation-Based Neuromodulation

- Neuromodulation that
 - directly modulates activations: selective activation
 - indirectly modulates learning: selective plasticity

A Neuromodulated Meta-Learning algorithm (ANML)

A Neuromodulated Meta-Learning algorithm (ANML)

Prediction network (θ^{P})

Normal Deep Learning

II B

ANML

 Omniglot, following OML each character type is a class/task

Domain

Omniglot character set

dataset for few-shot learning (1623 character classes)

deally, differentiate through 600 tasks

Approximation: train on task t+1 validate on t+1 & some previous tasks

Task 1 $\theta_1^1 \dots \theta_1^k$

Task 1

Task 2

 $\theta_1^1 \dots \theta_1^k$

k updates

Learn sequentially on one class in the inner-loop

Backpropagate through the SGD steps

META-TESTING

meta-testing post-training on a held-out set of 200 classes

train on first class (15 instances)

meta-testing post-training on a held-out set of 200 classes

train on first class (15 instances)

test on remaining 5 instances of first class

meta-testing post-training on a held-out set of 200 classes

meta-testing post-training on a held-out set of 600 classes

Reminder: Continual Learning is Hard

- Normal Deep Learning
 - IID sampling (no catastrophic forgetting)
 - Multiple passes through data
- Sequential Learning
 - Catastrophic Forgetting
 - One pass through data
Results

sequential learning, one epoch

vs. IID Oracles, Relative Performance Drop

- Oracles eliminate CF
- Oracle Sequential
 - isolates performance drop due to CF

vs. IID Oracles, Relative Performance Drop

after one pass through 600 classes

Suggests ANML has mostly solved CF is in this problem

Pretrain &
TransferOMLANML

 67%
 47%
 8%

Random Image 1 Random Image 2

Sparse on each instance

Random Image 3

Mean **Over Dataset**

Efficiently used across dataset

Both OML and ANML: No dead neurons! vs. ~14% with sparsity auxiliary loss

(Javed & White 2019)

Update

- Sara Pelivani et al. at UCL / Evolution.ai found results are ~just as good without the NM network (she will share more soon)
- We had controlled num params, so made red smaller
 - Turns out being smaller is the key driver of improved performance
- We are still investigating
 - why smaller models do better
 - where neuromodulation helps
 - e.g. for domain transfer: https://arxiv.org/abs/2108.12056

Neuromodulatory network (θ^{N} Ī Prediction network (θ^{\dagger}

ANML Conclusions

- OML/ANML can learn 600 sequential tasks, and still perform pretty well on all on average
- Learns to produce sparse representations
 - and likely many other things to solve CF
- Future work:
 - more and harder domains
 - other flavors of meta-learning (e.g. RNNs)

Artificial General Intelligence (AGI) or Human-level AI, if you prefer

Long way to go

How will we get there?

- Dominant paradigm in ML
- Phase 1: Identify key building blocks

Manual Path to Al

Key Building Blocks?

- convolution \bullet
- attention mechanisms \bullet
- spatial tranformers \bullet
- batch/layer norm \bullet
- a learned loss (e.g. evolved policy gradients) \bullet
- hierarchical RL, options \bullet
- structural organization (regularity, modularity, \bullet hierarchy)
- intrinsic motivation (many different flavors) ullet
- auxiliary tasks (predictions, autoencoding, \bullet predicting rewards, etc.)
- good initializations (Xavier, MAML, etc.) \bullet
- catastrophic forgetting solutions \bullet
- universal value functions \bullet
- hindsight experience replay
- LSTM cell machinery variants \bullet
- complex optimizers (Adam, RMSprop, etc.) \bullet

how many more? hundreds? thousands? can we find them all?

- Dyna \bullet
- variance reduction techniques
- activation functions \bullet
- good hyperparameters \bullet
- capsules \bullet
- gradient-friendly architectures (skip \bullet connections, highway networks)
- value functions, state-value functions, \bullet advantage functions
- recurrence (where?) \bullet
- multi-modal fusion \bullet
- trust regions \bullet
- Bayesian methods \bullet
- Active learning ullet
- Probabilistic models
- Distance metrics (latent codes)
- etc. \bullet

- Dominant paradigm in ML
- Phase 1: Identify key building blocks

- Phase 2: Combine building blocks into complex thinking machine
 - Herculean task
 - complex, non-linear interactions
 - debugging, optimizing would be a nightmare
 - massive team required (e.g. CERN, Apollo)

Manual Path to Al

Clear Machine Learning Trend: Hand-designed pipelines are ultimately outperformed by learned solutions

hand designed ----> learned

- Features
- Architectures
- Hyperparameters & data augmentation
- RL algorithms

suggests alternate path

- Learn as much as possible
- Bootstrap from simple to AGI
- Expensive outer loop
 - produces a sample-efficient, intelligent agent
- Existence proof
 - Earth

Three Pillars

- 1. Meta-learn architectures
- 2. Meta-learn learning algorithms
- 3. Generate effective learning environments

Handcrafting each is slow, limited by our intelligence/time Better to learn them. Let ML+compute do the heavy lifting

Three Pillars

- 1. Meta-learn architectures
- 2. Meta-learn learning algorithms
- 3. Generate effective learning environments

Three Pillars

- 1. Meta-learn architectures
 - Evolved NAS Real et al. 2017
 - Generative Teaching Networks Such et al. ICML 2020.
 - Synthetic Petri Dish. Rawal et al. 2020

Three Pillars

- 1. Meta-learn architectures
- 2. Meta-learn learning algorithms
- 3. Generate effective learning environments

CORL Keynote, see jeffclune.com/videos.html

Overall Conclusions

- Described
 - Differentiable Hebbian plasticity
 - Differentiable neuromodulated Hebbian Plasticity
 - ANML: Learning to continually learn via neuromodulation
 - Al-Generating Algorithms
- In all, materials matter
 - Hebbian plasticity vs. normal RNN
 - Neuromodulation
- What other materials should we be building with? Might we be able to search for them?

Main collaborators

- Thomas Miconi
- Shawn Beaulieu
- Ken Stanley

Thanks!

- Nick Cheney
- Joel Lehman
- Lapo Frati

Join us at U. British Columbia!

