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Intro and Motivation
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• Achieves State of the Art Performance on a Variety of Tasks

• Needs labelled data

• Many iterations of training

• Retraining or transfer learning for learning new classes
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Supervised Learning

NMNIST: 99% Accuracy

DVSGesture: 96% Accuracy



Why Learn from Unlabeled Data 

• Difficult to collect sufficiently large data sets for supervised learning

• Limitations of data sets to cover all potential scenarios

• Potential to customize learning to users and scenarios



Variational Auto Encoders

• How to learn from new data without a dedicated training phase?

• Learn disentangled representation of the data
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• Supervised to self-supervised learning with latent representation learning
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Self-Labelling Data



Hybrid Guided 
Variational Auto-Encoder
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Hybrid Guided Variational Auto-Encoder



Hybrid Guided Variational Auto-Encoder

• DVS record event streams at a high temporal 
resolution

• Compatible with SNNs

• Detect brightness changes on a log scale

• Event: x, y, time t, polarity p

• Event stream:

• Use Time Surfaces (TS) for VAE targets

• TS constructed by convolving an exponential decay 
kernel through time in the event stream 

Event Sensor Data Streams and Time Surfaces (TS)
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Time Surface



Hybrid Guided Variational Auto-Encoder

• Encoder SNN trainable through gradient descent

• Convolutional SNN Layers encode spatio-temporal 
streams into a latent space

• SNN can bridge computational time scales by 
extracting slow and relevant factors of variation from 
fast event streams recorded by the DVS 

• Reconstructed TS x* is equivalent to pre-synaptic trace 
Qt

• LIF neuron model with time step 

• Training done on GPU

DECOLLE SNN Encoder (GPU)
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Hybrid Guided Variational Auto-Encoder

• VAEs do not necessarily disentangle all factors of 
variation

• Need a disentangled, interpretable latent space

• Supervised Guided-VAE trains subset of latent 
variables to encode ground-truth labels

• Remaining latent variables uncorrelated with the label

Guiding Adversarial Classifiers
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Hybrid Guided Variational Auto-Encoder

• Non-spiking decoder

• Only interested in latent structure produced by 
encoder, rather than the generative features of the 
network

• Dedicated neuromorphic processor only requires the 
encoder to produce latent structure

• More resources can be dedicated to SNN encoder

• Reconstructs TS, use TS in reconstruction loss

Non-Spiking CNN Decoder
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Hybrid Guided Variational Auto-Encoder



NMNIST Dataset
Comparison of original TS with reconstructed TS
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NMNIST Latent Space T-SNE
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• T-SNE to visualize the learned representations and 
disentanglement of the classes

• T-SNE embeds both the local and global topology of 
the latent space into a two-dimensional space for 
visualization

• Each digit representation, coded by color, is clearly 
disentangled and separable in the latent space



Labeling Unlabeled 
Gestures
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DVSGesture Dataset
Comparison of original TS with reconstructed TS
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Latent Space Traversal

Across “other” uncorrelated factors
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Between two classes



Labelling Unlabelled Gestures
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• To test generalization of the learned encoder, 
evaluated how the VAE model performs when 
provided with new gesture data captured in a new 
environment

• Recorded gestures belonging to two classes not 
present in the DVSGesture dataset



Neuromorphic 
Implementation
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SLAYER Pre-Training

• To train with the same neuron model and 
quantization as the Loihi SLAYER was used

• SLAYER has a differentiable functional 
simulator of the Loihi chip for one-to-one 
mapping of trained networks onto hardware
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SLAYER-Loihi Functional Simulator



SLAYER Membrane Potential Encoding

• The mean and variance of the network were made 
spiking

• Uses the quantized membrane potential of the neuron 
for the latent representation instead of ANN trained 
full precision values

• The network can be mapped to the Loihi for inference

• Not necessary to map the decoder to the Loihi
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• T-SNE of the latent space representation of three 
gesture classes using the encoder mapped onto the 
Loihi

• Three classes are separable

• No clear separation with all classes

• Could be due to the low-precision integers used for 
synaptic weights and membrane potentials
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Loihi Encoder Inference



Conclusion and 
Future Work
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Contributions

1. End-to-end trainable event-based SNNs for processing neuromorphic 
sensor data event-by-event and embedding them
in a latent space.

2. A Hybrid Guided-VAE that encodes event-based camera data
in a latent space representation of salient features for clustering and 
pseudo-labeling.

3. A proof-of-concept implementation of the Hybrid Guided-
VAE on Intel’s Loihi Neuromorphic Research Processor.
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Future Work

• Address limitations of neuromorphic hardware model

• Improve disentanglement of classes

• Add online learning of unlabeled data with the SNN encoder on hardware

• Create demonstration of self-supervised online learning

• Try method with other types of sensor data such as EMG

31



Thank You



Questions?
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• Certain very similar gestures are confused, 
such as Right and Wave and Right Arm 
Clockwise or Air Drums with Hand Clapping

Latent Space 
Confusion Matrix



Ablation Study
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Hybrid Unguided VAE
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CNN Unguided VAE CNN Guided VAE
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VAE Comparison to 
Classifier Output

• T-SNE visualization of the features learned by the 
convolutional layers of DECOLLE and SLAYER models

• Features learned by the models do not clearly 
disentangle classes

• New gestures are not clearly clustered


