Optimal Oscillator Memory Networks

Connor Bybee

Advisor: Fritz Sommer

Motivation

Attractor networks are important models of memory in neuroscience & ML Memory networks models for hippocampus and other brain areas Error-correction in Vector Symbolic Architectures (VSA) "Modern Hopfield Networks" in Transformer networks

Many traditional attractor models are inefficient

How to design efficient associative memories for neuromorphic hardware or coupled oscillators?

Classical "Hopfield" Associative Memory

An associative memory stores a set of patterns for robust recall

Hopfield, John J. "Neural networks and physical systems with emergent collective computational abilities." *Proceedings of the national academy of sciences* 79.8 (1982): 2554-2558.

Efficiency of Associative Memories

Parameters

Μ	Patterns
Ν	Units/Neurons
$S = \{W_{ij}\} $	Synapses/Parameters
Ip	Pattern Information (Bits/Pattern)

Pattern Capacity

М	Patterns
N	Unit

Information Capacity

$I_p M$	Bits
S	Synapse

Existing Associative Memory Models

	Pattern Information	Pattern & Information Capacity
Binary & Dense & Discrete	High	Low
Sparse	Low	High
Complex & Dense & Continuous	High	Low

Frady, E. Paxon, and Friedrich T. Sommer. "Robust computation with rhythmic spike patterns." *Proceedings of the National Academy of Sciences* 116.36 (2019): 18050-18059.

Existing Associative Memory Models

Frady, E. Paxon, and Friedrich T. Sommer. "Robust computation with rhythmic spike patterns." *Proceedings of the National Academy of Sciences* 116.36 (2019): 18050-18059.

Complex-Valued Phasor Associative Memory

Noest, A. J. (1988). Discrete-state phasor neural networks. *Physical Review A*, 38(4), 2196.

Trade-off Pattern Complexity vs. Error-Correction

Capacity Results for Q-State Phasor Networks

★ Maximum capacity at Q=3 as predicted by mean-field theory - Cook, J. (1989)

Oscillator Networks

Mapping Associative Memories to Hardware

Synchronization in Weakly-Coupled Oscillators

Continuous Phasors

Kuramoto Model

$$\mathbf{z}(t+1) = f(\mathbf{W}\mathbf{z}(t)); \ W_{ij} = 1$$
$$f(z_i) = \frac{z_i}{|z_i|}$$

$$\dot{\phi}_i = \epsilon \sum_j \sin(\phi_j - \phi_i)$$

Kuramoto Phasor Associative Memory

Phasor associative memories map to Kuramoto oscillator networks

Without state quantization fixed-points of dynamical system **ARE NOT**^{*} stored patterns

Phase Quantization

Phase Quantization

$$f(u_i) = \exp\left(i\frac{2\pi}{Q}\operatorname{argmin}_q \left|\phi_i^{\mathrm{u}} - \frac{2\pi q}{Q}\right|\right)$$

Harmonic Injection Locking (HIL) $\dot{\phi}_i = -\epsilon \frac{\partial E(\phi)}{\partial \phi_i} - h \sin(Q\phi_i - \phi_j)$ $Q = \frac{\omega_{inj}}{\omega_{mem}}$ Harmonic Ratio

*Presented in Nishikawa et at. '92 for bipolar patterns

Result: Q-State Oscillator Network

Complete System Dynamics

$$\dot{\phi}_i = \epsilon \sum_j R_{ij} \sin(\phi_j + \Phi_{ij} - \phi_i) - h \sin(Q\phi_i - \phi_j)$$

Q = 3

Capacity of Q-state Oscillator Models

General Phase Coupling

$$\dot{\phi}_i = \sum_j C_{ij} g(\phi_j - \phi_i)$$

٠

M-ary Phase Shift Keying (M-PSK)

★ Again, Q = 3 is optimal!!

Summary

Dense Hopfield associative memories in the literature have low capacity

Q-State Phasor Associative Memories achieve high capacity

Implementation of Q-state Phasor Associative Memories in couple oscillators with harmonic injection

Q = 3 is best!

Acknowledgments

REDWOOD CENTER

for Theoretical Neuroscience

Fritz Sommer

Alex Belsten

Denis Kleyko

Paxon Frady

Bruno Olshausen

Dmitri Nikonov (Intel Labs)

Funding NSF Graduate Research Fellowship Program Intel Neuromorphic Computing Lab (NCL) Research Grant (INRC)

