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Motivation

Attractor networks are important models of memory in neuroscience & ML
Memory networks models for hippocampus and other brain areas
Error-correction in Vector Symbolic Architectures (VSA)
“Modern Hopfield Networks” in Transformer networks

Many traditional attractor models are inefficient
How to design efficient associative memories for neuromorphic hardware or 
coupled oscillators?



Classical “Hopfield” Associative Memory
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Successful Decode Error

Basin of Attraction

Spurious State

Hopfield, John J. "Neural networks and physical systems with emergent collective computational 
abilities." Proceedings of the national academy of sciences 79.8 (1982): 2554-2558.

Energy Function
𝐸𝐸 = −𝒙𝒙𝑻𝑻𝑾𝑾𝒙𝒙

Error-Correction (Two Components) 
• Collective State Computation
• State Quantization 𝑓𝑓 𝑥𝑥 = sign(x)

An associative memory stores a set of patterns for robust recall
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Existing Associative Memory Models

Frady, E. Paxon, and Friedrich T. Sommer. "Robust computation with rhythmic spike patterns." Proceedings of the 
National Academy of Sciences 116.36 (2019): 18050-18059.

Pattern 
Information

Pattern & Information 
Capacity

Binary & Dense & Discrete High Low

Sparse Low High

Complex & Dense & Continuous High Low



Existing Associative Memory Models

Frady, E. Paxon, and Friedrich T. Sommer. "Robust computation with rhythmic spike patterns." Proceedings of the 
National Academy of Sciences 116.36 (2019): 18050-18059.

Pattern 
Complexity

Pattern & Information 
Capacity

Binary & Dense & Discrete High Low

Sparse Low High

Complex & Dense & Continuous High Low

Complex & Dense & Discrete High ?



Complex-Valued Phasor Associative Memory

Noest, Andre. "Phasor neural networks." Neural information processing systems. 1987.
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Complex Outer Product Learning Rule
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Continuous Patterns
𝝃𝝃𝒌𝒌 ∈ ℂ𝑵𝑵

Dynamics
𝒛𝒛 𝑡𝑡 + 1 = 𝑓𝑓 𝑾𝑾𝒛𝒛 𝑡𝑡
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Q-State Phasor Neural Networks

Patterns

Dynamics

Noest, A. J. (1988). Discrete-state phasor neural networks. Physical Review A, 38(4), 2196.
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Trade-off Pattern Complexity vs. Error-Correction
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Capacity Results for Q-State Phasor Networks

Maximum capacity at Q=3 as predicted by mean-field theory - Cook, J. (1989)



Oscillator Networks
Mapping Associative Memories to Hardware



Synchronization in Weakly-Coupled Oscillators
Kuramoto Model
�̇�𝜙𝑖𝑖 = 𝜖𝜖 ∑𝑖𝑖 sin(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑖𝑖)

Continuous Phasors

𝒛𝒛 𝑡𝑡 + 1 = 𝑓𝑓 𝑾𝑾𝒛𝒛 𝑡𝑡 ; 𝑊𝑊𝑖𝑖𝑖𝑖 = 1

𝑓𝑓 𝑧𝑧𝑖𝑖 =
𝑧𝑧𝑖𝑖

|𝑧𝑧𝑖𝑖|



Kuramoto Phasor Associative Memory
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𝑅𝑅𝑖𝑖𝑖𝑖sin(𝜙𝜙𝑖𝑖 + Φ𝑖𝑖𝑖𝑖 − 𝜙𝜙𝑖𝑖)

Dynamics

Parameters

Phasor associative memories map to Kuramoto oscillator networks

Without state quantization fixed-points of dynamical system ARE NOT* stored patterns

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑊𝑊𝑖𝑖𝑖𝑖

Φ𝑖𝑖𝑖𝑖 = arg 𝑊𝑊𝑖𝑖𝑖𝑖

Coupling Strength

Coupling Phase Shift

*For M > 2



Phase Quantization

Phase Quantization

𝑓𝑓 𝑢𝑢𝑖𝑖 = exp 𝑖𝑖
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Harmonic Injection Locking (HIL)
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− ℎ sin(𝑄𝑄𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑖𝑖)

*Presented in Nishikawa et at. ‘92 for bipolar patterns

𝑄𝑄 =
𝜔𝜔𝑖𝑖𝑖𝑖𝑖𝑖
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

Harmonic Ratio



Result: Q-State Oscillator Network
Complete System Dynamics
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𝑅𝑅𝑖𝑖𝑖𝑖 sin 𝜙𝜙𝑖𝑖 + Φ𝑖𝑖𝑖𝑖 − 𝜙𝜙𝑖𝑖 − ℎ sin(𝑄𝑄𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑖𝑖)



Capacity of Q-state Oscillator Models



General Phase Coupling
̇
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𝐶𝐶𝑖𝑖𝑖𝑖𝑔𝑔(𝜙𝜙𝑖𝑖 − 𝜙𝜙𝑖𝑖)



M-ary Phase Shift Keying (M-PSK)

Again, 𝑄𝑄 = 3 is optimal!!



Summary

Dense Hopfield associative memories in the literature have low capacity

Q-State Phasor Associative Memories achieve high capacity

Implementation of Q-state Phasor Associative Memories in couple oscillators 
with harmonic injection

𝑄𝑄 = 3 is best!
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