Online learning in SNNs with e-prop and Neuromorphic Hardware

Adam Perrett Sara Summerton Andrew Gait Oliver Rhodes

The University of Manchester

Human Brain Project

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

Motivation

- Online learning
 - No break between acting and learning
 - Local tailoring of a system
- Neuromorphic
 - Low power
 - Low latency
 - Event-based computing
 - Biologically inspired
- SpiNNaker
 - Real-time computing
 - Adaptable digital platform
 - Scale

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

Recurrent models with working memory

- Common practice in machine learning is to use Long Short Term Memory (LSTM) units
- Very successful in temporal tasks such as language processing and video prediction

Back propagation through time (BPTT)

- Error is propagated backwards through the network and time
- Unravelling as another layer with shared weights for each time step
- All states must be recorded for all time steps you wish to learn over
- Not suited to neuromorphics

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. *Nature communications*, *11*(1), 1-15.

Working memory in spiking neurons

2s

- The firing threshold A_j(t) of a leaky integrate-and-fire (LIF) neuron j contains a time-varying component a_j(t)
- It's temporarily increased by each spike $z_j(t)$ of the neuron:

spikes $z_j(t)$ of neuron jfiring threshold $A_j(t)$ of neuron j v_{th} Performance comparable with LSTMs when trained with BPTT!

Performance comparison

for step sizes of 1ms (light color) and 2ms (saturated)

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Long short-term memory and learning-to-learn in networks of spiking neurons. *Advances in neural information processing systems*, *31*.

Spiking neural network learning (LIF)

- Inherently recurrent as future states are influenced by past ones
- Non differentiable activation function
- Requires pseudo-derivative

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

Eligibility propagation (e-prop)

- Eligibility captures the history of behaviour
- It is lowpass filtered through time
- The error is broadcast along random feedback weights^[1] creating the learning signal
- Eligibility and the learning signal create the weight updates

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. *Nature communications*, *11*(1), 1-15.

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. *Nature communications*, *11*(1), 1-15.

Neuron model - (A)LIF

- Membrane voltage leaks
- Integrates spikes from the inputs and recurrent connections
- Reset by subtraction after spiking
- Produce a spike if above threshold
- The adaptive threshold increases following a spike then decays back down

$$\upsilon_j^{t+1} = \alpha \upsilon_j^t + \sum_{i \neq j} W_{ji}^{\text{rec}} z_i^t + \sum_i W_{ji}^{\text{in}} x_i^{t+1} - \frac{z_j^t A}{z_j^t A}$$

$$z_j^t = \begin{cases} 1, & \text{if } (v_j^t - A_j^t) > 0\\ 0, & \text{otherwise} \end{cases}$$

$$A_j^t = v_{\rm th} + \beta a_j^t$$
$$a_j^{t+1} = \rho a_j^t + z_j^t$$

Weight updates

- Eligibility of a neuron is the product of the pseudo derivative and the incoming spike trace
- Weight updates are the product of the eligibility trace and the learning signal

$$e_{ji}^{t} = \psi_{j}^{t} \left(\bar{z}_{i}^{t-1} - \beta \epsilon_{ji,a}^{t} \right)$$

- Motivation
- Memory in neural networks
- E-prop

• SpiNNaker

- Wave form matching
- Temporal credit assignment
- Conclusions

SpiNNaker

- Memory constraints
 - 96 kB TCM per core (32kB ITCM, 64kB DTCM)
 - 128 MB SDRAM per chip
 - 18 cores/chip
- Real-time/online
- Weight precision (16-bit fixed point)
- Programmable

SpiNNaker implementation

- 8 neurons/core
- 250 synapses/neuron

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

Waveform matching

- Proof of concept to test matching a target output
- A repeated Poisson spike source is injected into a network
- A target waveform is compared with the output neuron's membrane potential to produce an error
- The learning signal is broadcast to the network to reduce the error

Waveform matching architecture

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

- Left and right signals are presented to a mouse as it walks down a hallway
- At the end of the hallway it should select the direction which presented the most cues

- input 0 = left cue
- input 1 = right cue

- input 2 = prompt signal
- input 3 = 10Hz noise

- ON = 100Hz

- output 0 = right decision

output 1 = left decision

- Receives left and right cues
- After presentation there is 1s delay
- Prompt signal indicates to the network that a decision must be made
- A learning signal is only broadcast during the duration of the prompt
- Curriculum learning increases the number of cues after threshold performance (1, 3, 5, 7)

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. *Nature communications*, *11*(1), 1-15. 25

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to the learning dilemma for recurrent networks of spiking neurons. *Nature communications*, *11*(1), 1-15.

Temporal credit assignment architecture

Typical result for temporal credit assignment

- Significant learning takes place during the first stage
- Eventually the task becomes difficult enough to degrade performance requiring substantial retraining

- Motivation
- Memory in neural networks
- E-prop
- SpiNNaker
- Wave form matching
- Temporal credit assignment
- Conclusions

8 neurons constant firing

Conclusions

Challenges:

- Neuromorphic restrictions
- Firing rate regularisation

Future work:

- Move to multi-core model
- Recurrent connections
- Reinforcement learning tasks (eg Pong)

8 neurons burst firing

Questions?