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Motivation

• Online learning
• No break between acting and learning
• Local tailoring of a system

• Neuromorphic
• Low power
• Low latency
• Event-based computing
• Biologically inspired

• SpiNNaker 
• Real-time computing
• Adaptable digital platform
• Scale
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Recurrent models with working memory

• Common practice in machine learning is to use Long Short Term 
Memory (LSTM) units

• Very successful in temporal tasks such as language processing and 
video prediction
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Back propagation through time (BPTT)

• Error is propagated backwards through the 
network and time

• Unravelling as another layer with shared 
weights for each time step

• All states must be recorded for all time steps 
you wish to learn over

• Not suited to neuromorphics
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Spiking neural network learning (LIF)

• Inherently recurrent as future states are influenced by past ones

• Non differentiable activation function

• Requires pseudo-derivative
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Eligibility propagation (e-prop)

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., 
Legenstein, R., & Maass, W. (2020). A solution to the learning 
dilemma for recurrent networks of spiking neurons. Nature 
communications, 11(1), 1-15.

• Eligibility captures the history of 
behaviour

• It is lowpass filtered through time

• The error is broadcast along random 
feedback weights[1] creating the 
learning signal

• Eligibility and the learning signal create 
the weight updates

[1] Lillicrap, T.P., Cownden, D., Tweed, D.B. and Akerman, C.J., 
2014. Random feedback weights support learning in deep neural 
networks. arXiv preprint arXiv:1411.0247.
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BPTT E-prop

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to 
the learning dilemma for recurrent networks of spiking neurons. Nature communications, 11(1), 1-15.



Neuron model - (A)LIF

• Membrane voltage leaks

• Integrates spikes from the 
inputs and recurrent 
connections

• Reset by subtraction after 
spiking

• Produce a spike if above 
threshold

• The adaptive threshold 
increases following a spike then 
decays back down 



Weight updates

• Eligibility of a neuron is the 
product of the pseudo 
derivative and the incoming 
spike trace

• Weight updates are the 
product of the eligibility trace 
and the learning signal
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SpiNNaker

• Memory constraints
• 96 kB TCM per core (32kB ITCM, 64kB DTCM)
• 128 MB SDRAM per chip
• 18 cores/chip

• Real-time/online

• Weight precision (16-bit fixed point)

• Programmable
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SpiNNaker chip

(18 ARM cores)

SpiNNaker board

(48 chips)



SpiNNaker implementation
• 8 neurons/core
• 250 synapses/neuron
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Waveform matching

• Proof of concept to test matching a target output

• A repeated Poisson spike source is injected into a network

• A target waveform is compared with the output neuron’s membrane potential to 
produce an error

• The learning signal is broadcast to the network to reduce the error



Waveform matching architecture

Repeating Poisson 
spike train

Hidden population 
n=100

Only LIF
No adaptive threshold

Readout neuron compares 
desired output with Vmem
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Learning signal
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Temporal credit assignment
• Left and right signals are presented to a mouse as it walks down a hallway

• At the end of the hallway it should select the direction which presented the 
most cues



Temporal credit assignment
- input 0 = left cue - input 2 = prompt signal
- input 1 = right cue - input 3 = 10Hz noise

- ON = 100Hz - OFF = 0Hz

- output 0 = right decision - output 1 = left decision



Temporal credit assignment

• Receives left and right cues

• After presentation there is 1s delay

• Prompt signal indicates to the network that a 
decision must be made

• A learning signal is only broadcast during the 
duration of the prompt

• Curriculum learning increases the number of 
cues after threshold performance (1, 3, 5, 7)
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Temporal credit assignment architecture

Variable Poisson 
spike train

Hidden population 
n=100

ALIF – adaptive 
threshold

Readout neurons compare 
softmax of 2 neurons Vmem
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Learning signal

Poisson rate control



Temporal credit assignment
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Typical result for temporal credit assignment

• Significant learning takes 
place during the first stage

• Eventually the task becomes 
difficult enough to degrade 
performance requiring 
substantial retraining

1 cue 3 cues 5 cues 7 cues
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Conclusions

Challenges:

• Neuromorphic restrictions

• Firing rate regularisation

Future work:

• Move to multi-core model

• Recurrent connections

• Reinforcement learning tasks (eg Pong)
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8 neurons constant firing

8 neurons burst firing



Questions?
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