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Motivation

* Online learning
* No break between acting and learning
* Local tailoring of a system

* Neuromorphic
* Low power
* Low latency
* Event-based computing
* Biologically inspired

* SpiNNaker
e Real-time computing
* Adaptable digital platform
e Scale
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Recurrent models with working memory

 Common practice in machine learning is to use Long Short Term
Memory (LSTM) units

* Very successful in temporal tasks such as language processing and
video prediction




Back propagation through time (BPTT)

* Error is propagated backwards through the
network and time

* Unravelling as another layer with shared
weights for each time step

* All states must be recorded for all time steps _

you wish to learn over

* Not suited to neuromorphics
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Bellec, G., Scherr, F.,, Subramoney, A., Hajek, E., Salaj, D., Legenstein, R.,
& Maass, W. (2020). A solution to the learning dilemma for recurrent
networks of spiking neurons. Nature communications, 11(1), 1-15.



Working memory in spiking neurons

* The firing threshold A;(t) of a leaky * Performance comparable with LSTMs
integrate-and-fire (LIF) neuron j when trained with BPTT!
contains a time-varying component . .
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Spiking neural network learning (LIF)

* Inherently recurrent as future states are influenced by past ones

* Non differentiable activation function

* Requires pseudo-derivative
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Eligibility propagation (e-prop)

* Eligibility captures the history of
behaviour

* |t is lowpass filtered through time

b

LN

* The error is broadcast along random

feedback weights!!! creating the
learning signal

* Eligibility and the learning signal create
the weight updates

[1] Lillicrap, T.P., Cownden, D., Tweed, D.B. and Akerman, C.J.,
2014. Random feedback weights support learning in deep neural
networks. arXiv preprint arXiv:1411.0247.

Computation steps

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D.,
Legenstein, R., & Maass, W. (2020). A solution to the learning
dilemma for recurrent networks of spiking neurons. Nature
communications, 11(1), 1-15.



BPTT E-prop
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Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2020). A solution to
the learning dilemma for recurrent networks of spiking neurons. Nature communications, 11(1), 1-15.
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Neuron model - (A)LIF

* Membrane voltage leaks

* Integrates spikes from the
inputs and recurrent
connections

* Reset by subtraction after
spiking

* Produce a spike if above
threshold

* The adaptive threshold
increases following a spike then
decays back down




Weight updates

* Eligibility of a neuron is the
product of the pseudo
derivative and the incoming
spike trace

* Weight updates are the
product of the eligibility trace
and the learning signal
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SpiNNaker

SpiNNaker board

(48 chips)
* Memory constraints PP
* 96 kB TCM per core (32kB ITCM, 64kB DTCM) = |71 * “*Jj‘_g
128 MB SDRAM per chip miii
18 cores/chip I /T /1
o B

* Real-time/online

SpiNNaker chip
(18 ARM cores)
* Weight precision (16-bit fixed point) | \’5?\
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* Programmable




SpiNNaker implementation

* 8 neurons/core
e 250 synapses/neuron
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Waveform matching

* Proof of concept to test matching a target output
* A repeated Poisson spike source is injected into a network

* A target waveform is compared with the output neuron’s membrane potential to
produce an error

* The learning signal is broadcast to the network to reduce the error



Waveform matching architecture

Hidden population

: : n=100
Repeating Poisson Readout neuron compares

desired output with V_ ..,

spike train

Only LIF
No adaptive threshold

Learning signal
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Temporal credit assighment

* Left and right signals are presented to a mouse as it walks down a hallway

* At the end of the hallway it should select the direction which presented the
most cues
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Temporal credit assighment

- input O = left cue - input 2 = prompt signal
- input 1 =right cue - input 3 = 10Hz noise
- ON = 100Hz - OFF =0Hz
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- output 0 = right decision - output 1 = left decision



Temporal credit assighment
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Receives left and right cues

After presentation there is 1s delay
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* Prompt signal indicates to the network that a

decision must be made o H
2 L
* Alearning signal is only broadcast during the 3¢5 T
duration of the prompt S
* Curriculum learning increases the number of ° Tmeinms

cues after threshold performance (1, 3, 5, 7)

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., & Maass,
W. (2020). A solution to the learning dilemma for recurrent networks of spiking
neurons. Nature communications, 11(1), 1-15.
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Temporal credit assignment architecture

Poisson rate control

I S e
_— _-

Hidden population
Variable Poisson n=100 Readout neurons compare

spike train ALIF — adaptive softmax of 2 neurons V.
threshold

Learning signal
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emporal credit assignment
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Typical result for temporal credit assignment

* Significant learning takes

7 cues
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* Eventually the task becomes
difficult enough to degrade
performance requiring
substantial retraining
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8 neurons constant firing

( : | . . v
OI.C USIOIIS 10 N Mm\w

nnnnn

Challenges: T

* Neuromorphic restrictions | i e e

* Firing rate regularisation L LT DI LT

8 neurons burst firing
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Future work:

* Move to multi-core model

* Recurrent connections
* Reinforcement learning tasks (eg Pong)
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Questions?



