Event-based datasets for classification and pose estimation

James P. Turner1 \quad Jens E. Pedersen2 \\
Jörg Conradt2 \quad Thomas Nowotny1

1University of Sussex \quad 2KTH Royal Institute of Technology

J.P.Turner@sussex.ac.uk
Neuromorphic Vision Data

- Many datasets allowed the significant growth of ANN-based deep learning

- Some new spiking event-based datasets for SNN machine learning
 - IBM DVS128 Gesture Dataset
 - Neuromorphic N-MNIST Dataset

- Issue: lack of infrastructure for collecting large event-based datasets
- Can collect lots of data, but how do we label it? Need automation...
Setup Overview

- Goal is to create spiking event-based dataset for human-robot interaction (a robot ‘helper’ which can manipulate tools)
- 8x Vicon Vero 2.2 (3D tracking) cameras
- 2x DVS DAVIS 346 (event/RGB) cameras
- Project prop meshes into Vicon space, based on known marker locations in STL file and Vicon tracker
- Then project props onto DVS camera planes, based on known camera location and orientation
Dataset Props

- Problem: Vicon NIR strobe interferes with DVS cameras, and standard (passive) markers are visible on props

- Solution: custom 3D printed hollow props, with small NIR LED markers and battery

STL files available online at https://github.com/jamesturner246/active-tracker-props

- Remaining low-power NIR light filtered from DVS cameras with 780 nm cut filters
Calibration Procedure

• For projection, we need to know the transformation from 3D Vicon space to 2D camera plane coordinates, but camera location and orientation is unknown.

• Record flashing markers with Vicon and DVS cameras at several positions (we use the Vicon Active Wand v2, with strobe enabled).

• Through optimisation, we find the best rotation and translation which fits these points from 3D Vicon space to 3D camera-centric space, and project onto the 2D image plane using the standard Pinhole camera model.
Example Recording

- 2 cameras, multiple props in view
- Segmentation labels of events and RGB frames
- Translation and rotation (pose) labels
- Extrapolation of bad pose data
Sample Dataset

- Small sample dataset with 9 separate 30 second recordings of suspended moving props

- Stored in HDF5 format online
 https://doi.org/10.25377/sussex.17112080.v1

- Processing code is available online
 https://github.com/jamesturner246/vicon-dvs-projection

```bash
./data/[prop]/[sample #]
frame.h5
  timestamp_i, image_raw_i, image_undistorted_i, label_i

event.h5
  timestamp_i, polarity_i, xy_raw_i, xy_undistorted_i, label_i

pose.h5
  timestamp, extrapolated[p], rotation[p], camera_rotation_i[p],
  translation[p], camera_translation_i[p]
```
Event-Based Object Detection

- Events binned into 21msec ‘frames’, with augmentation
- VGG16-like ANN network, trained with transfer learning
- Converted to SNN using Few-Spike Conversion [1]

Issues and Future Work

- No events when props are still
- Difficult to disambiguate props at certain angles
- Noise, presence of other objects, occlusions
- Should integrate detection and pose information over time
- Estimate prop translation and rotation estimation, in addition to tool identity
Thanks for your time

Questions?

J.P.Turner@sussex.ac.uk