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So what is the BitBrain idea all about?

• Single-pass supervised learning; currently follows an unsupervised phase where parameters are
learned quickly in a simple, `local’ and highly parallel way that avoids attempted global optimisation
over very high-dimensional continuous spaces or calculation of derivatives.

• Accurate inference (classification for now) that is robust against imperfect inputs & uncertainty.

• Support for continuous adaptive learning – with or without `forgetting’.

• Designed to be implemented with low energy-latency product - both training and inference - on
conventional CPU and memory architectures, and on current and future neuromorphic devices.

• A natural target for the increasing number of event-based sensors such as silicon retinas, enabling
further energy and bandwidth gains to be exploited.

An innovative working mechanism (the SBC memory) and surrounding
infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse
coding, computational neuroscience and information theory.
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Patent GB 2113341.8 filed at the UKIPO on 17th Sept 2021 by myself and Steve Furber.



other hand, the ability of dendritic branches in pyramidal and
other neuron types to support local electrogenesis, evidenced by
the generation of dendritic spikes, has been shown to underlie the
non-linear integration of synaptic inputs.

Based on their primary source, dendritic spikes are distin-
guished in three main types: sodium, calcium and NMDA (N-
methyl-D-aspartate) spikes, all of which have been extensively
documented in pyramidal neurons both in vitro (Ariav et al., 2003;
Gasparini et al., 2004; Golding et al., 2002; Kim et al., 2012;
Losonczy and Magee, 2006; Makara and Magee, 2013; Nevian et al.,
2007; Polsky et al., 2004; Schiller et al., 1997) and in vivo (Lavzin
et al., 2012; Smith et al., 2013). They are characterized as nonlinear,
all-or-none dendritic responses which can propagate actively for
some distance and are often confined within the generating branch
(Antic et al., 2010; Larkum and Zhu, 2002; Schiller et al., 1997,
2000b). This allows the branch, the dendrite or the neuron to
integrate synaptic signals over much longer timescales than
passive integration would allow.

Since the processing capabilities of pyramidal neuron dendrites
are discussed in several excellent reviews (Branco and Häusser,
2010; Häusser et al., 2003; Major et al., 2013; Segev, 2000; Silver,
2010; Spruston, 2008), we highlight just a few of their key features.
Cortical dendrites, perform synaptic integration non-uniformly,
with distal inputs within the same branch being amplified over
larger time windows compared to proximal ones (Branco and
Häusser, 2011). This difference is attributed, by computational
models, to the generation of NMDA-dependent dendritic spikes
which are facilitated when synapses are located near the tip of a
dendritic branch (Branco and Häusser, 2011; Sidiropoulou and
Poirazi, 2012). As a result, distal synapses, which are individually

too weak to significantly influence the somatic voltage, can act
cooperatively to affect the output of the neuron (Schiller et al.,
2000a). A similar nonlinearity that serves as a mechanism for
coincidence detection also depends on NMDA conductances, this
time in the apical tuft dendrites of layer 5 pyramidal neurons
(Larkum et al., 2009). The initiation of dendritic spikes and their
amplitude is, in turn, determined by the magnitude and location of
inhibition that these neurons receive (Jadi et al., 2012).

The above are just a few examples of modeling and
experimental studies suggesting that local spikes enable dendritic
branches to implement nonlinear integration modes (Mel, 1993;
Häusser et al., 2000; Gasparini et al., 2004, Polsky et al., 2004;
Losonczy and Magee, 2006; Makara and Magee, 2013), thus
conferring enhanced flexibility in neuronal information proces-
sing. In order to exploit this additional processing power of
nonlinear dendrites, synaptic input should be such that the whole
range of possible dendritic responses are explored, including the
generation of dendritic spikes. As discussed in Sections 2.1 and 2.2,
the spatial arrangement of synaptic inputs in dendritic branches
can provide a way to realize this goal.

2.1. Effect of spatial synaptic arrangement on dendritic integration:
distributed connectivity and linear integration

Distributed synaptic inputs, irrespectively of their location
within the neuron, have been suggested to summate linearly, a
result attributed to the elaborated biophysical profile of pyramidal
neuron dendrites (Cash and Yuste, 1999; Yuste, 2011). This linear
integration mode may be particularly useful when synaptic input
is dispersed uniformly throughout the dendritic tree, for example

Fig. 1. Dendritic structure and plasticity. Each dendritic tree (apical or basal) in pyramidal neurons can be subdivided to a number of dendrites (dendritic subtrees connected
to the apical trunk or the soma). Thin terminal branches are the main targets of excitation in the cerebral cortex. There, synaptic inputs can be organized in the following ways:
(1) they can be localized in the same dendritic branch without specific spatial arrangement (in-branch localization), (2) they can form anatomical clusters, whereby spines
form morphologically distinct groups of several spine heads located in distances less than 5 mm from each other within stretches of a given branch and (3) they can form
functional clusters where spine density is uniform but nearby synapses (located within 10–20 mm) are activated synchronously. The implications of these different
arrangements of connectivity at the dendritic level are discussed in Section 2.

G. Kastellakis et al. / Progress in Neurobiology 126 (2015) 19–35 21

An example ADE which contains multiple synapses with individual 

weights which can signify strength and/or longevity of connection.

Each ADE samples a small subset of the input data e.g. the pixels of an MNIST digit.

When the sum of the connected input values multiplied 

by their respective synaptic weights within an ADE 

reaches a threshold (which is learned homeostatically), 

the ADE will ‘fire’ - analogous to an NMDA potential from 

a synaptic cluster within a dendrite.

The input stream can be any objects or data which are 

able to be coded as a vector of bits or any other scalar 

values i.e. almost anything!  Here using a 784-vector of 

8-bit values to represent a grayscale raster image.

89            42         -18             23         -102         74  

Address Decoder Elements (ADEs)
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From Synaptic clustering within dendrites: An emerging theory of 
memory formation. Kastellakis et al (2015)



This is a 2D memory. 
3D and higher (using 
more ADs) are also 
of interest.

size of SBC match 
the length of ADs 
e.g. 1,024

depth = f( # classes )

<- activated 
memory position

Activation pattern is sparse i.e. 
only a small percentage of the 
ADEs in each AD will fire for 
any given input.

Each coincidence of active 
ADEs between ADs activates a 
memory location that reads or 
writes information about the 
class which has activated it.
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Address Decoders (ADs) accessing a 2D SBC memory
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‘Side view’ of SBC memory, showing
‘depth’ which varies with number 
of classes in problem.  In this case, 10 
classes with ‘one-hot’ coding meaning
10 bit cells per memory position.

3 activations are shown and in this case
the input is from class 6.

<- Bits that were set previously

<- Bits set by this input

1    2    3    4    5    6    7    8    9   10

Memory positions
activated by 
coincident ADEs 

Writing to the SBC: go to all activated memory positions & set the relevant class bits if they are not already set.

Reading from the SBC: count bits set over all activated memory positions & choose class with the highest sum.

Assumes ‘one-hot’ encoding.  If classes are coded differently then another encoding/decoding process required.

Class information held within SBC memory
5
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Basic results from MNIST (10 classes balanced)
AD lengths = 2,048. 4x ADs with { 6, 8, 10, 12 } synapse cluster size. AD target firing ≈1% per input.
Synapses spatially clustered and then within-cluster structural plasticity used to home in on features.
10x 2D SBCs; 6x full-size between ADs, 4x half-size within ADs.
42MB memory for full occupancy. Typically ≈15MB stored with opportunities for high levels of compression (≈1,000x).
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Basic results from MNIST (10 classes balanced)7
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MNIST from LeNet-5
Early but respected CNN designed for character recognition, see https://en.wikipedia.org/wiki/LeNet
Max 100 epochs, early stopping with `patience’ = 5. Sigmoidal activations, `static’ noise
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MNIST robustness comparison BitBrain vs LeNet-59



MNIST robustness comparison BitBrain vs CapsNet10



Basic results from EMNIST (62 classes unbalanced)
BitBrain setup identical to MNIST. Much harder problem. Very unbalanced and natural class aliasing:

{ o, O, 0 }, { i, I, l, 1 }, { s, S, 5 }, { B, 8 }
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EMNIST robustness comparison BitBrain vs LeNet-512



EMNIST robustness comparison BitBrain vs CapsNet13



MNIST comparison with other single-pass methods - 1
14

Red bars are CNNs trained for only one epoch
Blue bars are specifically designed single-pass classification methods
References for all methods are in our upcoming paper



MNIST comparison with other single-pass methods - 2
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Another publication compares single-pass SVM methods for two-class problems.

Their table 1 giving % accuracy on the test set for differentiating 0 vs 1 and 8 vs 9 is
reproduced below, including BitBrain results. Best results are in bold.

Reproduced from: Piyush Rai, Hal III, and Suresh Venkatasubramanian. Streamed learning: One-pass SVMs. 
IJCAI International Joint Conference on Artificial Intelligence, 2009.

libSVM Perceptron Pegasos
1 

Pegasos
20 LASVM StreamSVM

1 
StreamSVM

2 BitBrain

0 vs 1 99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95
8 vs 9 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49



Conclusions
BitBrain status:
• Novel single-pass learning mechanism
• Accurate classification – best in single-pass class on MNIST
• Good robustness to imperfect inputs and other forms of uncertainty
• Simple and energy-efficient operation (small integer and bitwise - no floating point)
• Single-thread implementation on on 3.2GHz Apple ARMM1 gives 10k inferences in 0.42 secs
• Improvements investigated: ‘Jitter’/data augmentation and weighting of counts by occupancy both gain ≈1% on MNIST

To do and in progress:
• More challenging 2D image benchmarks: CIFAR-10 & -100, German traffic sign database, many others…
• CNN or other biologically-inspired front end
• Continuous adaptive learning, with or without forgetting
• Layers of SBC memories connected in novel ways
• Application to different types of data: time series, DNA/biology, abstract codes, 3D volumetric, …
• Differing time delays on synaptic connections for automatic spatio-temporal pattern classification
• More underlying theory; particularly connections to Kernel methods, SDM, VSA/VFA, …
• Good mappings to GPU, FPGA, SpiNNaker, other neuromorphic platforms, specialised hardware?
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