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So what is the BitBrain idea all about?

An innovative working mechanism (the SBC memory) and surrounding
infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse
coding, computational neuroscience and information theory.

Single-pass supervised learning; currently follows an unsupervised phase where parameters are
learned quickly in a simple, ‘local’ and highly parallel way that avoids attempted global optimisation
over very high-dimensional continuous spaces or calculation of derivatives.

Accurate inference (classification for now) that is robust against imperfect inputs & uncertainty.
Support for continuous adaptive learning — with or without forgetting’.

Designed to be implemented with low energy-latency product - both training and inference - on
conventional CPU and memory architectures, and on current and future neuromorphic devices.

A natural target for the increasing number of event-based sensors such as silicon retinas, enabling
further energy and bandwidth gains to be exploited.

Patent GB 2113341.8 filed at the UKIPO on 17t Sept 2021 by myself and Steve Furber.



Address Decoder Elements (ADEs)

Each ADE samples a small subset of the input data e.g. the pixels of an MNIST digit.

An example ADE which contains multiple synapses with individual
weights which can signify strength and/or longevity of connection.
{ 89 42 -18 23 -102 74 }
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Address Decoders (ADs) accessing a 2D SBC memory

Activation pattern is sparse i.e.

only a small percentage of the
ADEs in each AD will fire for
any given input.

Each coincidence of active
ADEs between ADs activates a
memory location that reads or
writes information about the
class which has activated it.

Address Decoder 1

Address Decoder 2

This is a 2D memory.
3D and higher (using
more ADs) are also
of interest.

size of SBC match
the length of ADs
e.g. 1,024

depth = f( # classes )

< <- activated
memory position



Class information held within SBC memory

< Depth of SBC memory =

Memory positions
activated by

coincident ADEs \

‘Side view’ of SBC memory, showing
‘depth’ which varies with number

of classes in problem. In this case, 10
classes with ‘one-hot’ coding meaning
10 bit cells per memory position.

3 activations are shown and in this case
the input is from class 6.

@ <- Bits that were set previously

@ <- Bits set by this input

Writing to the SBC: go to all activated memory positions & set the relevant class bits if they are not already set.

Reading from the SBC: count bits set over all activated memory positions & choose class with the highest sum.

Assumes ‘one-hot’ encoding. If classes are coded differently then another encoding/decoding process required.



Basic results from MNIST (10 classes balanced)

AD lengths = 2,048. 4x ADs with {6, 8, 10, 12 } synapse cluster size. AD target firing =1% per input.

Synapses spatially clustered and then within-cluster structural plasticity used to home in on features.

10x 2D SBCs; 6x full-size between ADs, 4x half-size within ADs.

42MB memory for full occupancy. Typically =15MB stored with opportunities for high levels of compression (=1,000x).

MNIST accuracy by Training noise SD for BitBrain - Gaussian noise
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Basic results from MNIST (10 classes balanced)

MNIST accuracy in % for BitBrain with Gaussian noise
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MNIST from LeNet-5

Early but respected CNN designed for character recognition, see https://en.wikipedia.org/wiki/LeNet

Max 100 epochs, early stopping with “patience’ = 5. Sigmoidal activations, ‘static’ noise

100

MNIST accuracy by Training noise SD for LeNet-5 - bounded pixels
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https://en.wikipedia.org/wiki/LeNet
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MNIST robustness comparison BitBrain vs LeNet-5

MNIST robustness comparison - Gaussian noise
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MNIST robustness comparison BitBrain vs CapsNet

MNIST robustness comparison - Gaussian noise
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Basic results from EMNIST (62 classes unbalanced)

BitBrain setup identical to MNIST. Much harder problem. Very unbalanced and natural class aliasing:
{0,0,0}, {1,LLL1},{s,S,5},{B,8}

EMNIST accuracy by Training noise SD for BitBrain - Gaussian noise
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EMNIST robustness comparison BitBrain vs LeNet-5

EMNIST robustness comparison - Gaussian noise
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EMNIST robustness comparison BitBrain vs CapsNet

EMNIST robustness comparison - Gaussian noise
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MNIST comparison with other single-pass methods - 1

Red bars are CNNs trained for only one epoch
Blue bars are specifically designed single-pass classification methods
References for all methods are in our upcoming paper
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MNIST comparison with other single-pass methods - 2

Another publication compares single-pass SVM methods for two-class problems.

Their table 1 giving % accuracy on the test set for differentiating O vs 1 and 8 vs 9 is
reproduced below, including BitBrain results. Best results are in bold.

libSVM | Perceptron Pegasos | Pegasos LASVM StreamSVM | StreamSVM BitBrain
1 20 1 2
Ovs1l  99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95
8vs9 | 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49

Reproduced from: Piyush Rai, Hal lll, and Suresh Venkatasubramanian. Streamed learning: One-pass SVMs.
IJCAIl International Joint Conference on Artificial Intelligence, 2009.
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Conclusions

BitBrain status:

Novel single-pass learning mechanism

Accurate classification — best in single-pass class on MINIST

Good robustness to imperfect inputs and other forms of uncertainty

Simple and energy-efficient operation (small integer and bitwise - no floating point)
Single-thread implementation on on 3.2GHz Apple ARM M1 gives 10k inferences in 0.42 secs

Improvements investigated: ‘Jitter’/data augmentation and weighting of counts by occupancy both gain =1% on MNIST

To do and in progress:

More challenging 2D image benchmarks: CIFAR-10 & -100, German traffic sign database, many others...
CNN or other biologically-inspired front end

Continuous adaptive learning, with or without forgetting

Layers of SBC memories connected in novel ways

Application to different types of data: time series, DNA/biology, abstract codes, 3D volumetric, ...
Differing time delays on synaptic connections for automatic spatio-temporal pattern classification
More underlying theory; particularly connections to Kernel methods, SDM, VSA/VFA, ...

Good mappings to GPU, FPGA, SpiNNaker, other neuromorphic platforms, specialised hardware?



