Photonic neuromorphic processing

Wolfram Pernice

https://www.kip.uni-heidelberg.de/photon/

Heidelberg University, Kirchhoff-Institute for Physics

NICE 2022 - March 30th

Photonic circuits for computing

- Waveguide based devices
- Nanofabricated in Uni cleanrooms
- Photonic CAD with Python framework

Gehring, et al., OSA Contin. 2, 3091 (2019)

Re-programmable photonics

- Add active elements to passive waveguides
- Implement synapses and neuron soma with phase change materials (PCMs)

Ge₂Sb₂Te₅ (GST)

Re-programmable photonics

- Add active elements to passive waveguides
- Implement synapses and neuron soma with phase change materials (PCMs)
- All-optical reconfiguration within sub-nanoseconds

 $Ge_2Sb_2Te_5$ (GST)

Re-programmable photonics

Change of optical properties is directly visible
=> use reflectivity, transmission, absorption

P. Hosseini, C D Wright & H Bhaskaran, Nature 511, 206 (2014)

PCM nanophotonic devices

- Place PCM in near-field of optical waveguide
- Data is encoded in the amount of transmitted power

Write pulses

Operating principle: readout process

Operating principle: write/erase process

Change of atomic ordering

crystalline

Cut through waveguide

amorphous

FFT

Artifical neuron - concept

Operations required for matrix multiplication:

Photonic neurons

- Tunable weights using phase-change materials
- WDM multiplexer to perform signal addition without interference
- Tunable ring resonator as threshold generator

A small-scale ANN

- 15 input neurons and 4 output neurons
- Each letter is pixelized into 15 digital elements
- Complementary basis to reduce number of input wavelengths

A closer look at the phontonic ANN

Convolutional neural networks

Matrix multiplication on amplitude

A*T = P

Performing multiplication corresponds to:

- Set amplitude A
- Set transmission T
- measure P

More multiplications in parallel

What works with one color ...

... also works with more

Ultrafast convolution processing

Frequency comb, Kippenberg group (EPFL)

Ultrafast convolution processing

PCM Matrix chip

Ultrafast convolution processing

Digit recognition with photonic NNs

Input layer

 $28 \times 28 \times 1$

 $27 \times 27 \times 4$

2916×1

5 10 15 20 25 Result

~95% accurate

10 15 20

The people who really do the work:

At WWU:

C. Schuck and team

F. BP, A. Ovvyan, S. Ferrari, N. Walter, F. Beutel, M. Stappers, H. Gehring, C. Kaspar, F. Lenzini, T. Grottke, J. Lin, J, Schütte, E. Lomonte, R. Terhaar, I. Bente, D. Wendland, A. Varri, L. Deriks, R. Jaha, D. Raskhodchikov

At Oxford: N. Youngblood H. Bhaskaran X. Li

DFG

At Exeter: D. Wright E. Gemo S. Garcia-Cuevas Carrillo Volkswagen**Stiftung**

At IBM: A. Sebastian

