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Overview

Many factors are driving improved design of future computer
systems

— Electronics scaling, power, domain specific computing, business models, etc.

— Massive demand for next-generation HPC systems (e.g., ModSim, Al, Data,
Omniverse)

DOE and others have embraced codesign as a path forward

- Enablelintegrated design and implementation of end-to-end solutions, then
iterate!

- Re_ilr_nagning Codesign focuses on new computational paradigms, workloads,
agility
Abisko is a new codesign project with the ambitious goals

— Design Spiking Neural Network chiplet based on resistive switching materials
that can be integrated with contemporary computer architectures

— Develop portable software stack for neuromorphic algorithms across a range of

platforms
— Develop codesign framework for deep codesign into devices and materials

Abisko is an interdisciplinary project including scientists from
applications, algorithms, software, architectures, devices and
circuits, and materials! |

Overview Brochure

Basic Research Needs for
Reimagining Codesign for
Advanced Scientific Computing

Unlocking Transformational Opportunities
for Future Computing Systems for Science
16-18 March 2021

https://doi.org/10.2172/1822198
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https://www.osti.gov/biblio/1822198-reimagining-codesign-advanced-scientific-computing-unlocking-transformational-opportunities-future-computing-systems-science

Basic Research Needs for Microelectronics (2018
Workshop)

Basic Research Needs for

* Five Priority Research Microelectronics
Directions

— Flip the current paradigm

— Revolutionize memory and data
storage

— Reimagine informal flow
unconstrained by interconnects

— Redefine computing by leveraging
unexploited physical phenomena

— Reinvent the electricity grid
through new materials, devices,
an d arc h |te CtU res Report of the Office of Science Workshop on

Basic Research Needs for Microelectronics
October 23 - 25, 2018

https://www.osti.gov/biblio/1616249-basic-research-needs-microelectronics-report-office-science-workshop-basic-research-needs-microelectronics-
october



https://www.osti.gov/biblio/1616249-basic-research-needs-microelectronics-report-office-science-workshop-basic-research-needs-microelectronics-october

Recent DOE Program on Microelectronics Codesign

Department of Energy Principal
i P Institution City, State Proposal Title
Investigator
. . Guha, Supratik Argonne National Lemont, IL Ultra-Dense, Near-Perfect, Atomic and Synaptic
DOE Announces $54 Million for Laboratory (AND
[ | i h
M I c roe eCt ro n I cs Resea rc to Powe r N eXt' Taylor, Valerie Argonne National Lemont, IL Threadwork: A Transformative Co-Design
. . Laboratory (ANL) Approach to Materials and Computer
Generation Technologies Arenectre Resoaeh
Braga, Davide Fermi National Batavia, IL Hybrid Cryogenic Detector Architectures for
MARCH 24, 2021 Accelerator Sensing and Edge Computing enabled by new
Laboratory (FNAL) Fabrication Processes
Garcia-Sciveres, Lawrence Berkeley Berkeley, CA Co-Design and Integration of nano-sensors on
Maurice National Laboratory CMOS
(LBNL)
Enargy.gov # DOE Announces $54 Million for Microslectronics Research to Power Next-Genaration Technologies Ramesh Lawrence Berkelev Berkeley CA Codes'lgn of UItra-Low-VoItage Beyond CMOS
Ramamoorthy National Laboratory Microelectronics
National Labs Will Lead Transformation of Smart Devices, Clean Energy Technologies, and Semiconductor (LBNL)
Manufacturing Haegel, Nancy National Renewable Golden, CO Nitride materials and interfaces for radiation-
Energy Laboratory hard integrated neutron detection
NREL
WASHINGTON, D.C. — The U.5. Department of Energy (DOE) today announced up to $54 million in ( ) . _ . — . —
new funding for the agency’s National Laboratories to advance basic research in microelectronics. Vetter, leffrey Ozk Ridge National Oak Ridge, TN Abisko: Ccdeflgn in the Wild: Designing
Laboratory (ORNL) Neuromerphic Hardware, Software, and
Microelectronics are a fundamental building block of modern devices such as laptops, Applications Concurrently using Al-enabled
smartphones, and home appliances, and hold the potential to power innovative solutions to Methods
challenges like the climate crisis and national security. Watch this video= to learn more about Graves, David Princeton Plasma Princeton, NJ Diamond co-doping for quantum sensor
microelectronics. Physics Laboratory applications
(PPPL)
"Thanks to microelectronics, transformational technologies that used to swallow up entire Aimone, James Sandia National Albuquerque, COINFLIPS: CO-designed Improved Neural
buildings now fit in the palms of our hands—and it's time to take this work to the next level,” said Laboratories (SNL) NM Foundations Leveraging Inherent Physics
Secretary of Energy Jennifer M. Granholm. "Microelectronics are the key to the technologies of Stochasticity
tomorrow, and with DOE’s world-class scientists leading the charge, they can help bring our clean Meclntyre, Paul SLAC National Menlo Park, CA Atoms-to-Systems Co-Design: Transforming Data
energy future to life and put America a step ahead of our economic competitors.” Ac;elerator Flow to Accelerate Scientific Discovery
Laboratory
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Architecture
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Image courtesy of Farah Fahim (FermilLab)

CMS Experiment

40MHz collision rate
~1B detector channels

FPGA filter stack
~us latency

10s Gb/s
~5 kHz

On-getector . ]3,‘:‘ ,I,E/ > Worldwide
_I_\abn sc?g\e%ﬁsslon — computing |qud

Exabyte-scale
datasets

On-prem CPU/GPU
1 Billion channels — filter farm

10x the average internet traffic in all of North ~100 ms latency
America
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Image courtesy of Farah Fahim (Fermilab)

Pixel Detector: Proposed ML implementation 21

Analog — Mixed Signal implementation using

Digital neuromorphic implementation
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Ability to work in the
latent space
(downstream
resources)

Reconfigurability vs.
pruning?

On-chip inference
vs. on-chip training?

Light weight
models?

Can lead to self
calibrating
detectors?
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NeuroRad Project at ORNL

e 1: Develop a neuromorphic-capable radiation anomaly detection

Slide courtesy of
NeuroRad project @
ORNL
James Ghawaly

algorithm and evaluate on both simulated and real-world data.

e 2. Integrate neuromorphic algorithm on uCaspian board and integrate
board with low power radiation detection system.

Datasets

DOE Urban Search Challenge [1]

HFIR/REDC Static Monitors [2]

%OAK RIDGE

National Laboratory

through urban street.
9700 training runs, 15840 testing runs

Example Street and Source

Direction of detector movement

L] -

T yre

3 locations of a source

» Single 2"x4"x16" Nal(Tl) detector moving « Mulfiple static sensor "nodes” each with a

single 2"x4"x16" Nal(Tl) detector, placed
around ORNL HFIR/REDC facility.
« <200 source encounters
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* DSL and API for neuromorphic co-processing Softwa re
* Built on LLVM and MLIR
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* Design neuromorphic chiplet
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* Heterogeneous integration with

contemporary technologies

Devices and Circuits
* joninsertion (reversible doping) sets analog states
* mRaman captures transition linear,
non-linear switching
* Will extend to 36x36 x-bar array
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Circuit scale up,
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Algorithms

EONS
 Generates ... e i
relatively — © (2
sparse /BN 0
- Evaluate the best algorithms for specific networks .. (% [
problems * Evolves the =~ %
— Include comparison against SOA techniques structure of @3/" i)

. . . . the network b "Aif;i oy wost
- Evaluate algorithmic options for specific &
application

— Input vector encoding
— Evaluate different configurations with

Deffe: Data Efficient Framework

SlmU|at|0n Parameters
. . . Intelligent
« Training, Inference, Online Cost Metrcs Sampling
* Interact with software and architecture S o ) nference

(A ML Model

teams i

Optimal
Design
Points

* Tools Evaluate

(Execution of
design points

— EONS (Evolutionary optimization) for training e SRk
— Deffe for Hyperparameter optimization

Design Space Exploration

ML Model 4

Extract
(Cost Metrics)




Neuromorphic Approach for Smart Pixel Detection

Dataset:

18

— Charge values from the LHC every 250ps timesteps

Goal
Data Compression, send only particle track information — (x, y, a, B)

In sensor pixel detection - hence, detection model needs to be small

First approach
— Apply neuromorphic algorithm — EONS

Explore spike encoding of charge values

Other approaches

Regression, Spiking convolution NN, unsupervised learning (STDP), Spike-based Object detection algorithms

Charge values
Per sensor array

/

Spike
encoding

~

)

/

EONS trained
SNN

~

—> (XI Y, @, B)
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How to encode nhumbers on a neuromorphic computer?

Encoding 10, i.e. 1010

23

{0,0}

{0,0}

10,0}

10,0}

O®OEE

Neuron Spikes

Encoding 0.625, i.e. 0101

v

v

v

Encoding -3.5, i.e. 0111

D2
{0,0}

21
{0,0}

—20
{0,03

21
{0,0} >
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The Virtual Neuron
(2

0
0

1

(1,1)

Current encoding methods are inadequate
o Rate-based encoding does not preserve addition o
o Binning loses information

Virtual neuron uses binary encoding, preserves addition (1,1) o
Takes two 2-bit numbers as inputs: x and y
Returns a 3-bit number as output: z

Implemented in NEST simulator

: ©

AT

: : , Yo

1;0 1;0 1 o§1+1=2

1i1 111 0 0} 1+3=4

R i X, - ' (-13)

o1 1101 <= (&
111 111 1 01} 343=6 %o 0 : o
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Interconnects, PDK

Devices and
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Compact models




Software

- Develop a holistic software
stack for neuromorphic
coprocessing in a
heterogeneous architecture
— Programming model
— Backend code generation

— Runtime

 Portable to GPU, FPGA, SoC,
and Abisko chiplet simulator

» Based on successful
experiences with Quantum
computing at ORNL.: XACC
— XACC, QCOR

 Building embedded DSL
(Domain Specific Language)
with LLVM and MLIR

e 28 S

MLIR

COMPILER INFRASTRUCTURE



XACC/QCOR Approach (as an analogue)

#define __qpu__ [[clang::syntax(qcor)]]

__qpu__ void bell(gqreg q, int shots) {
. quantum DSL heré ...
}

gcor SyntfaxHandler rewrites
function to QuantumKernel
subtype.

void bell(qreg q, int shots) {
void internal_bell_call(qreg, int);
internal_bell_call(q, shots);

class bell : public QuantumKernel<bell, qreg, int> {
public:
bell(qreg q, int shots)
: QuantumKernel<bell,qreg,int>(q, shots) {}
~bell() {

QuantumKernel

/Runtime - libgrt.so

. execute on backend ....

|

void internal_bell_call(qreg q, int shots) {
class bell kernel(q, shots);
}

L QuantumRuntime

4

Program call to bell function is a call to another
infernal function that instantiates a temporary
instance of the new QuantumKernel sub-type.
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Architectures

 Design chiplet for SNN that
can be easlily integrated with
contemporary technologies
— Heterogeneous integration

— Compatible with existing
processes

* Use RISC-V interface to
chiplet

* Simulate/emulate with
existing simulators like Gem5
and Aladdin




Abisko Architecture: Technology Landscape

* Advanced packaging is clearly one of the main technology drivers of
semiconductor scaling in the near future

From 2.5D to 3D and 3D+ Roadmap of 3D Packaging
= 10-100X improvement / generation in data speed and bandwidth density = From 2010 to 2030: bandwidth density (Gbps/mm-2) from <10 to 109,
2D 2.5D 3D 3D+ energy efficiency (pJ/bit) from >1 to 0.01
On-board, pack- | SIP, EMIB, passive ODI, CoWoS, active Hybrid bond,
to-package interposer, CoW, etc. interposer, etc. SolC, etc. "E Projected
rrrrrr 9 ) :
cccccccccccccccccccccccc é 2x/2 years o industry adoption
ETE RN - w
2 FOVEROS l e 2 o
» TECHNOLOGY Wl a i 1
S|  emseooeo ’ \ 8 5. = g
e BBBBBB = S ior | E‘ S
[ ¥ Bump pitch - 50-25 um <} > F
© |  PACKAGE . . uuuuuuuuuuu - 400-1,600/mm? <] S B o)
2 Jr— p pitch — 55-36 um Energy/bit - 0.15 pJ/bit SJ_ % pu=l) r:;
‘g - Bump density - 330-772/mm? —'m—'l'“'! -g = z
- Seaam— /it - 0.50 pl/bit — S e 8 ©
aumg:::;“;v;oou i = S R © 'c: SMT mbly to PCB 3
ergy/bi %

Energy Efficiency

* Underlying technology is the main uncertainty for neuromorphic accelerator

SPIKING NON-SPIKING

CMOS-friendly (Loihi)latency and traditional GPU/FPGA/NN

DIGITAL .
energy constraints accelerators

ANALOG interface to the rest of world, Interface repeatability
repeatability




Abisko Architecture: Smart Pixel Driver

* CMS Experiment from FemilLab: Farah Fahim

* 40 MHz collision rate (25ns latency)

* ~1B detector channels
* Active ongoing effort to design customized ASIC for data acquisition and compression
* Active ongoing effort to establish POR ML method on particle trajectory reconstruction

L
imput: | {Rane, 13, 2L, LH
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* On-going effort:
* Establish baseline specs in computing intensity required using POR ML method
* Explore techniques to better meet other constraints (quantization with fewer bits, spiking neuromorphic models)

* |nvestigate and define Interface between ML accelerator cores and von-Neumann cores
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Devices and Circuits Overview

Goals

* Harness the interplay between mobile defects (ions and vacancies) and electronic properties to realize
functional elements for spiking and non-spiking analog neuromorphic networks

* Create and validate small network models; generate device and network data for co-design

* Understand and mitigate radiation induced degradation mechanisms at the device and circuit level

Devi Circuits
evices
V,=x —(::)—-g% ' =2
1) ECRAM Vl NG EE *
: =X —(:)—x;q ' i
Gate nputs 2 2» Way W‘?g Wo3 W§ Eﬁ‘ﬁ ﬁ'
Vi=x, {- +
O EE ARRRRR
V4=X4 + {% - -‘
‘s“ﬂz) w W43HFW31 B i [
Draj ‘!’_I+ :E + r‘+ +
aln
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Ti exchange

N[
Ta (15 nm)
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switching

channel inputs
(+) charged C

vacancies
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Ta (15 nm)

(5-10 nm)
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Experimental TaOx ReRAM Conductance Distributions

Developed TaOx
weight mapping

w
and programming &
routine for S
optimizin -

P g "

inference accuracy

TaO,

# Devices

2000hm spacing between resistance targets
1000hm spread between R, R

max

2 4 6 8 10 12 14 16 18 20
Resistance (kQ)

Resulting conductance distribution

WL

o)
50 100 150 200 250 300 350 400 450 500
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ECRAM Synapse Based on Ru Prussian Blue Analog

Background

* Prussian blue analogs are highly stable and can be
patterned using photolithography

* Open crystal structure ideal for fast ion motion, but
most PBA are poor electrical conductors

Our work

* We fabricate Ru PBA ECRAM synapses that switch
with Li* or H* ions.

* The synapse display linear, symmetrical characteristics
with excellent endurance and good retention

* Scaling experiments indicate At,,,~1ns, AE_,~0.7f] for
100 nm channel device.
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Kelvin Probe Force Microscopy (KPFM) on PB thin films

2" pass G-Mode EFM/KPFM

|  Deconvolute

The principles of the measurement
procedure in KPFM technique using
two pass mode

M.Checa et al, APL, 2021

1ML

4ML
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0.00 um

10*10um
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T T
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Next step: nanoscale ionic effects from dielectric spectroscopy
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Devices and Circuits: Next steps and Recent Publications

Investigate RUPBA fabrication compatible with Si integration

Relate device characteristics to SPM measurements

* Develop compact model for ECRAM

Construct small networks using TaOx memristors and Ru PBA elements
* Test radiation hardness, effects on accuracy, noise, and retention

X. Xu, E. J.Cho, L. Bekker, A. A. Talin, E. Lee, A. J. Pascall, M. A. Worsley, J. Zhou, C. C. Cook, J. D. Kuntz, S. Cho and C. A.
Orme, A Bioinspired Artificial Injury Response System Based on a Robust Polymer Memristor to Mimic a Sense of Pain,
Sign of Injury and Healing, Adv. Science 2200629, 2022

Su-inYi, A. A. Talin, M. J. Marinella, R. S. Williams, Physical Compact Model for Three-Terminal SONQOS Synaptic Circuit
Element, submitted



Summary

e Abisko is a new microelectronics codesign
project with goals of

— Design Spiking Neural Network chiplet based on
resistive switching materials that can be
integrated with contemporary computer
architectures

— Develop portable software stack for
neuromorphic algorithms across a range of
platforms

— Develop codesign framework for deep codesign
into devices and materials

e Truly interdisciplinary team working across
the stack
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e More information
— vetter@computer.org
— https://vetter.github.io

e We are hiring!
— See jobs.ornl.gov

— Send an email to me.

Thanks!
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