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Neuromorphic hardware is
advantageous on probabilistic
algorithms

A




oL . ARTIC LES
electronics IR ot

Neuromorphic scaling advantages for
energy-efficient random walk computations
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Neuromorphic algorithm can simulate random @
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We can identify a neuromorphic advantage for @
simulating random walks
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Where does this advantage come from? @

COINFLIPS

e Extreme parallelism of neuromorphic hardware
plus
Embarrassingly parallel nature of Monte Carlo random walks

* Many simple calculations in parallel
S
Single complex calculation

* Limiting factor going forward will likely be probabilistic component
* Quality and form of random numbers
* Quantity and location of random number generation



What happens if we build a
neuromorphic chip centered on
probabilistic sampling?
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What constitutes brain inspiration? @

COINFLIPS

High fan-in
connectivity!

Analog
computing!




The brain’s trillions of synapses exhibit considerable @

stochasticity




The brain appears to use probabilistic sampling of
populations

Neuron

Hippocampal Reactivation of Random Trajectories
Resembling Brownian Diffusion
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How does brain use this ubiquitous stochasticity? @

COINFLIPS

DTMC random walks Expected value
(sampling network) (average over stochasticity)



Many applications of computing have inherent (F
uncertainty




Many applications of computing have inherent (r
uncertainty
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Two main use cases:
% Mod-Sim --- Generating the random number you need
¢ Artificial Intelligence --- Effective and efficient sampling of algorithms



So what would a probabilistic neuromorphic @
computer look like?

Goal: 1 billion RNs per microsecond
* ~1ell neurons x 1e4 synapses / neuron x 1 Hz = 1e15 RNs per second in human

Why?
* Numerical computing
 Artificial Intelligence

How?
 Stochastic devices
 Neuromorphic architecture

15



One possibility is to inject ubiquitous stochasticity @
into existing neuromorphic technologies

Deep Spiking Truly Brain-Derived
Learning Algorithms Algorithms

Algorithms

Hybrid Unknown Future
Analog-Digital (3D Architecture,
Neuromorphic Novel Devices, ...)

Programmable
Hardware

Spiking

GPUs Neuromorphic

16



Making stochasticity ubiquitous may require that we
revisit how we desigh neuromorphic hardware

17
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CO-designed Improved Neural Foundations Leveraging

Inherent Physics Stochasticity (COINFLIPS)
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Every synapse in the brainis a
stochastic “coinflip”
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COINFLIPS devices @
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Tunable
Stochastic

Devices

MT

Turnnal dicde

p-type GD n-type
otvoe LR novee

22



23

Tunable random number generator

Jean Anne Incorvia

50:50

20:80

Andy Kent

Tunable RNG — magnetic tunnel junctions & tunnel diodes @

COINFLIPS

Why did we pick the devices we picked?

Large signals Tunable

Ward line

&

ol :_heads

Il. Tunnel diodes

Integration

@

Implant

Shashank Misra & Tzu-Ming Lu
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COINFLIPS motivating application @

COINFLIPS

Particle Physics
Demonstration
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Jet detection in particle physics @

COINFLIPS

Detector response
Hadronization in 7 x ¢ space

Parton Hadron Detector
Underlying p+p, Vs=510 GeV  crified jets
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Opportunities for probabilistic neuromorphic @
computing in physics jet identification

Munte Carlo 51mulatmn5
2 .*. Improved model generation of
*:*:*i**-ﬁ- **_ artificial data to train ML model

Candidate
Distributions

How likely is jet an
event of interest?

Real-time (<microsecond) Bayesian
neural network identification of
events
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Experiment ' COINFLIPS |
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COINFLIPS algorithms — random number generation

Tunable
Stochastic
Devices

Probabilistic
Circuits and
Architectures

Probabilistic
Neural Theory
and Algorithms
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How do we use coinflips to sample from arbitrary
distributions?

Biased random source to
approximate uniform
random numbers

Uniform random numbers to
arbitrary distributions
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Random numbers are a non-trivial computational @
cost today

We want a RN pulled from some physics distribution

1 Software uses pseudo-RNG to pull uniform random number

- This is simple, but can be costly for volume and quality
RNG

T Numerical methods convert uniform RN to desired distribution
- Some distributions are easy (simple inverse CDF)

- Some distributions are challenging

29



It is possible to generate a random number from a @
desired statistical distribution

Expand Boolean tree of PDF and flip many coins for

all branches in parallel
— If(C,=T, p,=0.8) If(C,=H, p,=0.6)
5 4's Place

Draw uniform
RNG

» Worst case, this is a exponentially large number of coins
desired PDF * PDFs have structure and redundancies that can be leveraged

* Correlations from devices or built into neural circuits can similarly compress tree

Darby Smith
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A potential COINFLIPS architecture for generating @
random numbers

poal  pl0l  pdO0

mP(Ta

atlal]
plbg)= 8 P{bl} P{bz]

Neural Layer P{~by)=.799 p(~b,)=.5002 p(~b,)=.4005

CPU-like processor
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COINFLIPS algorithms — artificial intelligence @

Tunable
Stochastic
Devices

Probabilistic
Circuits and
Architectures

Probabilistic

Neural Theory
and Algorithms

COINFLIPS
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Establish a paradigm of computation around @

Sy nd pt IC Sam p I N g Deterministic Stochastic Stochastic CCINFLIPS
Simulation Neuron Synapse
Sampling Sampling
. ‘ Edge Weights + - Edge Weights +
Edge Weights : Node Probabilities . Edge Probabilities

Can novel neural ®

sampling algorithms be
leveraged to provide

more efficient and more |
powerful Al capabilities? ‘ \. o ’\
l ¥ E

Expected Value +
Probability of
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Sampling ANNs with stochastic
estimate of uncertainty

» Approach

» Train simple neural network with only
minor modifications

» Simple network can achieve decent
performance

1st choice
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Sampling ANNs with stochastic synapses provides
estimate of uncertainty _

» Approach

» Train simple neural network with
only minor modifications
» Convert weights to Bernoulli

probabilities (weighted coinflips)

» Sample network to identify what 784 X 400
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2"d choice of stochastic sampled networks is often (F

the ‘right’ answer for misclassified results

RSAEBRAE

6-038 9-031 4-0.36 9-0.26 3-0.23 6-0.26 0-0.39
5-017 4-028 7-035 2-0.20 9-0.20 2-0.25 6 -0.27




Sampling ANNs with stochastic synapses is robust to
low precision synapses

choice

1
3

-

Full Precision

o

L1} i

L4

an

L]

am

]

ra

ra

11

- 4 a - 4 “ Y ] u
i
Znd ilwaii

01 (3 0y e 3] LG (14 A in
[ 141 [EH) ord 1+ (3] oLt (k14

a 2 [ ar 1 [T ne ne

1] [ ai Bl L4 nE an ne

aa Lo (14 aim m L8] (14 ] (14

LA L2 an (12 [ 1 (14 ] (143

015 [+ [FE) a0 1L 1L (4] [ 3]

va va ura ura 1n va an ura

1K 1n LT [T 1 1 [ThT1 [ 3] 1L 11
01 L34 e [0 4] 1 0 o [k (1]

< = [ Kl * - o a4 L3 =
i e

T e

(]

8-bit randomness

"
&
]
n-
" a4 o w K & N o M
e
Ind chince - 3 B raiedein
e L0 [ (k] 4 hLi (%] phii | [13:] L a1
1- EI 11 o1 oLl 107 [ 3] oLt 011
3| A 1 nea (5] 1 L e
J e [ i nea 1] 1= an "
2. GBI L [115:] an am L3 (115 ] [115:]
. am L) el aL L4} 1 (4] (4]
§- B2 (3] o1l A0 1 1y oL (3]
1 LT I ura u un v3 an ura
f A LT 1 1 1 2 nra 1] 1o 1
e 10l L34 il 1] 1L el | uli] o1 (1]
b b b ] Ll K * =

T e

(]

®

COINFLIPS

6-bit randomness
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COINFLIPS circuit design

Tunable
Stochastic
Devices

Probabilistic

Circuits and
Architectures

Probabilistic
Neural Theory
and Algorithms
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COINFLIPS

Licheonar Pespose
in i # g SEECC

- e
/
| —
= e
. e — .- — . | -
P
| —Il-
L
| ;o '
1 f
Farlur Huxdror Cetssar

Particle Physic
Demonstration

4's Place

2's Place

1's Place

FA

38



Approach

Al-Enhanced Co-Design across Scales

Device Design Circuit Design System Design

In-Memory Computing Cluster
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SR -.._;_:.-.. | In-Mamary
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Fan (UCF), 2018

Can we g e e

| Alt . (e e . | Reward |
SRR e mAT A o

g ene rate J: _H e “?J :a I'-.-"-:: Tal'i.E Environment
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devices? _

Evolutionary/RL approaches RL approaches

COINFLIPS

Architecture Design  Algorithm Design
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Analytical and cycle-
accurate tools, network
cimulation tools

Katie Schuman
(Tenn)

Suma Cardwell
(Sandia)
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COINFLIPS presents an opportunity to develop a
community of interest to create a new computing
paradigm

Jointly develop a programming
model and theoretical framework
with an emerging technology

Opportunity for computing to
prioritize impact on
different classes of applications
Factor in integration and system
design from the onset
of a new approach

Optimize non-CMOS devices for

scalability and cost of reliability
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