COINFLIPS: CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity

Brad Aimone

jbaimon@sandia.gov

Neuromorphic hardware is advantageous on probabilistic algorithms

COINFLIPS

nature electronics ARTICLES

Neuromorphic scaling advantages for energy-efficient random walk computations

1. Darby Smitho, Aaron I. Hill, Leah E. Reeder, Brian C. Franke, Richard B. Lehoucq, Ojas Parekh, William Severa and James B. Aimone

Darby Smith

Neuromorphic algorithm can simulate random

 walks

Leaky Integrate and Fire Neuron

We can identify a neuromorphic advantage for simulating random walks

We define a neuromorphic advantage as an algorithm that shows a demonstrable advantage in terms of one resource (e.g., energy) while exhibiting comparable scaling in other resources (e.g., time).

Where does this advantage come from?

- Extreme parallelism of neuromorphic hardware plus
Embarrassingly parallel nature of Monte Carlo random walks
- Many simple calculations in parallel
vs
Single complex calculation
- Limiting factor going forward will likely be probabilistic component
- Quality and form of random numbers
- Quantity and location of random number generation

What happens if we build a neuromorphic chip centered on probabilistic sampling?

What constitutes brain inspiration?

The brain's trillions of synapses exhibit considerable stochasticity

The brain appears to use probabilistic sampling of populations

Neuron

Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion

Highlights
Hippocampal replay can represent Brownian diffusion-like
random trajectories
Reactivated trajectories
spatiotemporal scales

- Replay event statistics are incompatible with actual behavioral trajectories
- Expression dynamics of replayed assemblies was linked to specific oscillatory bands

Authors
Federico Stella, Peter Baracskay Joseph O'Neill, Jozsef Csicssvari
ederico.stella@ist.ac.at (F.S.) federico.stellaeist.ac.at (F.S.)
iozsef.csicssvarieist.ac.at (J.C. In Brief Stella et al. examine the dynamic properties of reactivated spatial trajectories in the hippocampus 1 non-stereotypical exploration an
that reactivated trajectories ares \leq hat reactivated trajectories are ς
by a Brownian diffusion process occur at varying lengths and tim without directly reflecting behavi

A

How does brain use this ubiquitous stochasticity?

DTMC random walks
(sampling network)

Expected value
(average over stochasticity)

Many applications of computing have inherent uncertainty

COINFLIPS

Many applications of computing have inherent uncertainty

Two main use cases:

* Mod-Sim --- Generating the random number you need
* Artificial Intelligence --- Effective and efficient sampling of algorithms

So what would a probabilistic neuromorphic computer look like?

Goal: 1 billion RNs per microsecond

- ~1e11 neurons $\times 1 \mathrm{e} 4$ synapses / neuron $\times 1 \mathrm{~Hz}=1 \mathrm{e} 15 \mathrm{RNs}$ per second in human

Why?

- Numerical computing
- Artificial Intelligence

How?

- Stochastic devices
- Neuromorphic architecture

One possibility is to inject ubiquitous stochasticity into existing neuromorphic technologies

Making stochasticity ubiquitous may require that we revisit how we design neuromorphic hardware

COINFLIPS

DOE Announces $\$ 54$ Million for Microelectronics Research to Power NextGeneration Technologies

MARCH 24. 2021

National Labs Will Lead Transformation of Smart Devices, Clean Energy Technologies, and Semicenductor Manufacturing

WASHINGTON, D.C. - The us. Department of Energy (DOE) today announced up to $\$ 54$ million in new funding for the agencys National Laboratories to adrance basic research in microelectronics. Microelectronics are a fundamental building block of modern devices such as laptops.
smartphones, and home appliances, and hold the potential to power innevative solutions to
challenges like the climate crisis and national security. Watch this videon to learn more about microelectronics.
"Thanks to microelectronics, transtormational technologies that used to swallow up entire buildings now fit in the palms of our hands-and it's time to take this work to the next level." said Seeretary of Energy Jennifer M. Granholm "Microelectronics are the key to the technologiss of tomorrow, and with DOE's world-class scientists leading the charge, they can help bring our clean energy future to life and put Americs a step ahead of our economic competitors."

Microelectronics were originally developed as a powerful capability for miniaturizing transistors and electronic circuits. Since then, they have fueled a digital revolution, making devices like computers and phonss more powerfut compret, and convenient for everyday uss.
More microelectronics research is needed to pave the was for the next generation of revolutionary technologies. Potential applications include clean energy technologies that will help America combat the elimate crisis, such as developments to make the nation"s grid more efficient, more responsive to fluctuations in energy demsnd, and more resilient to extreme weather events.

CO-designed Improved Neural Foundations Leveraging Inherent Physics Stochasticity (COINFLIPS)

 stochastic "coinflip"

COINFLIPS devices

Tunable RNG - magnetic tunnel junctions \& tunnel diodes

COINFLIPS
Tunable random number generator Why did we pick the devices we picked?

Integration

I. Magnetic tunnel junctions

II. Tunnel diodes

COINFLIPS motivating application

> Particle Physics

Demonstration

Jet detection in particle physics

Opportunities for probabilistic neuromorphic computing in physics jet identification

COINFLIPS algorithms - random number generation

How do we use coinflips to sample from arbitrary distributions?

Biased random source to approximate uniform

Random numbers are a non-trivial computational cost today

We want a RN pulled from some physics distribution

Software uses pseudo-RNG to pull uniform random number

- This is simple, but can be costly for volume and quality

Numerical methods convert uniform RN to desired distribution

- Some distributions are easy (simple inverse CDF)
- Some distributions are challenging

It is possible to generate a random number from a desired statistical distribution

Expand Boolean tree of PDF and flip many coins for all branches in parallel

- Worst case, this is a exponentially large number of coins

Convert to desired PDF

- PDFs have structure and redundancies that can be leveraged
- Correlations from devices or built into neural circuits can similarly compress tree

A potential COINFLIPS architecture for generating random numbers

COINFLIPS algorithms - artificial intelligence

COINFLIPS

Establish a paradigm of computation around

 synaptic samplingCan novel neural sampling algorithms be leveraged to provide more efficient and more powerful Al capabilities?

Sampling ANNs with stochastic synapses provides estimate of uncertainty

Sampling ANNs with stochastic synapses provides estimate of uncertainty

COINFLIPS
> Approach
> Train simple neural network with only minor modifications
> Convert weights to Bernoulli probabilities (weighted coinflips)
> Sample network to identify what

$2^{\text {nd }}$ choice of stochastic sampled networks is often the 'right' answer for misclassified results

COINFLIPS

$6-0.38$
$5-0.17$
$9-0.31$
$4-0.28$
4-0.36
9-0.26
3-0.23
6-0.26
0-0.39
$5-0.17 \quad 4-0.28$
7-0.35
2-0.20
9-0.20
2-0.25
6-0.27

Sampling ANNs with stochastic synapses is robust to low precision synapses

COINFLIPS circuit design

COINFLIPS

Al-Enhanced Co-Design across Scales

Device Design
Circuit Design
System Design
Architecture Design
Algorithm Design

Can we
leverage Al to generate specifications for novel devices?

Evolutionary/RL approaches

RL approaches

Analytical and cycle-
accurate tools, network
cimulation tools
Katie Schuman
(Tenn)
Suma Cardwell
(Sandia)

COINFLIPS presents an opportunity to develop a

 community of interest to create a new computing paradigmJointly develop a programming model and theoretical framework with an emerging technology

Factor in integration and system design from the onset of a new approach

Optimize non-CMOS devices for scalability and cost of reliability

Theory
4
bbiogcu

COINFLIPS Team

Sandia: Shashank Misra, Suma Cardwell, Darby Smith, Conrad James, Brad Theilman, William Severa, Ojas Parekh, Yipu Wang, Cale Crowder, Tzu-Ming Lu, Chris Allemang, Xujiao Gao, Juan Pedro Mendez, Scott Schmucker, Deanna Lopez

Tennessee: Katie Schuman

Temple: Les Bland, Bernd Surrow, Jae Nam
Texas: Jean Anne Incorvia, Jaesuk Kwon, Samuel Liu

Thanks!

NYU: Andy Kent, Laura Rehm

DOE Office of Science: ASCR (Robinson Pino PM), BES, HEP, NP, FES
U.S. DEPARTMENT OF

ENERGY

Office of Science

