
P R E S E N T E D B Y

Sandia National Laboratories is a

multimission laboratory managed and

operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly

owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s

National Nuclear Security Administration

under contract DE-NA0003525.

Cra ig M. V ineya rd , PhD (c m v i n e y @ s a n d i a . g ov)

Team: Brad Aimone, Suma Cardwell, Frances Chance, Srideep Musuvathy, Fred

Rothganger, William Severa, Darby Smith, Corinne Teeter, Craig Vineyard, Felix Wang

Neural Mini-Apps as a Tool for

Neuromorphic Computing Insight

All Benchmarks Are Wrong – Some Are Useful

Conventional benchmarks

• Defined by the processing to be executed

AI/ML benchmarks

• Sometimes defined by a particular model, other times a task or dataset

• Offers flexibility & mirrors ML

• Makes direct comparisons difficult

And yet that’s roughly what benchmarks are for – articulating
information about a computational approach & enabling
comparisons

2

All Benchmarks Are Wrong – Some Are Useful

Barbosa-Silva, Adriano, et al. "Mapping global dynamics of benchmark creation and saturation in artificial intelligence." arXiv preprint arXiv:2203.04592 (2022).

3

However, many of these efforts fall flat

• Barbosa-Silva et al. surveyed 1688 benchmarks across AI tasks

• Of these only 1111 are benchmarks with results at three or more times

➢ How can we meaningfully bring insight & understanding to neuromorphic computing???

Why Mini-Apps for Neuromorphic?

From Heroux et al., 2009: “there is a middle ground for small, self-contained programs that, like
benchmarks, contain the performance-intensive computations of a large-scale application, but are
large enough to also contain the context of those computations.”

These Mini-Apps would enable:

• Interaction with external research communities

• Simulators

• Early node architecture studies

• Network scaling studies

• New language and programming models

• Compiler tuning

Influence Future Platforms

Tailor Algorithms to Platforms

Analyze Testbed Systems

Conventional systems have

less uncertainty at algorithm

and programming level
NMC systems have

considerable uncertainty at

algorithm level

4

Conventional and Neuromorphic Mini-Apps

FUGU

Neuromorphic Mini-Apps?

Conventional Mini-Apps ? ? ?

Mini-Apps

Platform-

Agnostic

Programming

Layer

Back-Ends

5

Fugu addresses two key challenges of neuromorphic programming6

Portability
Programming neuromorphic platforms requires a graph

of neurons (nodes) and synapses (edges)

• Need to represent neural algorithms in common

graph format

• Need ability to translate graph into backend specific

constraints

Composability
Deploying applications on neuromorphic hardware

requires implementing algorithms within neural circuits

• Need to be able to build applications from well

designed kernels

• Need to take advantage of features offered by spiking

neuron model

Neuromorphic Mini-Apps?

? ? ?

Building Algorithms in Fugu

Scaffolds and Bricks

• Bricks provide the framework for scaffolds to build
the computational graph
• Uses NetworkX directed graph (DiGraph)

• Contains metadata
• Synchronizing with other bricks

• Data transfer/coding information

• Neuron and synapse parameters

Neural Computation Model

• Simple leaky-integrate-and-fire (LIF) model
• Membrane potential, decay constant,

activation threshold, probability of spike

• Point synapse model
• Synaptic weight and delay

• Instant decay (i.e. single-step integration)

7

Scaffold

scaffold.circuit
(as NetworkX DiGraph) Bricks

Metadata

scaffold.graph
(as NetworkX DiGraph)

Neurons

Platform-Specific
Code (e.g. NxCore)

Neurons

Fugu – Binary streaming adder8

Initial Neural Mini-Apps

Neuromorphic is potentially good for many different classes of computing applications

9

Scientific

Computing
• Similar to existing

Mini-Apps

• Well-defined tasks

Today’s Machine

Learning
• Emphasis of much

neuromorphic

research

• High bar with GPUs

Tomorrow’s Artificial

Intelligence

(computing’s future)
• Area of biggest

potential impact

• Poorly-defined

algorithms

Different Mini-Apps leverage different features of spiking neurons

Mini-App /

Kernel

Unbounded

Fan-In

(Fan-in > 2)

Threshold

(e.g., λ>1)

Synapse

Delays

Decay

(e.g., τ>0)

Random

Noise

Online

Learning

Streaming

Arithmetic

MA#1

Random

Walk

MA#2

Sparse

Coding

MA#3

Shortest

Path

10

Neural Mini-App Structure

Single-line Python interface

• python fluence_mini_app.py --run_mode loihi --neural_timesteps 10000 -v 100 -dt .02 -ss .05 -da .2 -M 200

Can run multiple backends from same function

• Currently have worked with Fugu, Loihi, SpiNNaker

Flags to set Mini-App specific parameters

• Scaling parameters (e.g., # neuromorphic timesteps, # of walkers)

• Implementation parameters (e.g., angle precision, time precision)

• Physics parameters (e.g., particle velocity, scattering probabilities)

11

Neuromorphic Random Walk

Discrete time Markov Chain (DTMC)

• Particle Angular Fluence: the time-integrated flux of particles traveling through
media given as a function of position and velocity

• Particles travel at a constant speed and experience relative velocity scattering over
a small region of space

• Conventional approach models walkers & tracks states – neuromorphic models
state & tracks walkers

Smith, J. Darby, et al. "Neuromorphic scaling advantages for energy-efficient random
walk computations." Nature Electronics (2022): 1-11.

12 Example Results -

Parameterization Number of total walkers, Size of direction/relative

velocity/angular discretization, Time step size of

simulation, Size of the state space, Size of

positional discretization

Scaling Walkers, Mesh size

Metrics Energy cost of walkers, Time to run, Space to run

Neural Sparse Coding

Sparse Coding or Sparse Dictionary Learning

• Method of modeling data by decomposing it into sparse linear combinations of
elements of a given overcomplete basis set

• On neuromorphic, the LASSO (least absolute shrinkage and selection operator)
computation for sparse coding can be approximated with the spike-based algorithm
LCA (locally competitive algorithm)

• Implemented as rate-coded neurons with inhibitory connections between competing
dictionary elements

13 Example Results -

Parameterization Size of image, Size of image patch, Size of the

dictionary, Stride of image patch, Desired sparsity

Scaling Problem size via # of image patches, Parameters

Metrics Time for setup, Time for reconstruction,

Reconstruction performance, Reconstruction sparsity,

Compute resource usage, Energy resource usage

Neural Graph Analysis

Single Source Shortest Path (SSSP)

• Between a source and target node, what is the shortest path (and path length)
that connects the two

• SNN is straightforward – each vertex in the source graph is a neuron, each
edge is a synapse between neurons, & graph weights equate to delays

• The source neuron receives input driving it to spike send ensuing spikes through the
SNN

• Shortest path length is determined when the target spikes & monitoring edges can
yield the path

14 Example Results -

Parameterization Graph generation (uniformly random tree,

small world), Nodes, Weight range, Max

runtime, Source, Target

Scaling Graph scale, Weight/delay range

Metrics Total time, Time for setup

15

From Heroux et al., 2009: “there is a middle ground for small, self-contained programs that, like benchmarks,
contain the performance-intensive computations of a large-scale application, but are large enough to also
contain the context of those computations.”

Fugu design principles such as compositionality allow us to explore not only core computations, but also
application context

• E.g. Random Walk mini-app illustrates this as rigorous physics simulation details are included

• Prior work has shown a neuromorphic advantage may require considering problem setup and scaling as well as the
computation

Verzi, Stephen J., et al. "Computing with spikes:

The advantage of fine-grained timing." Neural

computation 30.10 (2018): 2660-2690.

Why Mini-Apps for Neuromorphic?

Parekh, Ojas, et al. "Constant-depth and subcubic-size threshold

circuits for matrix multiplication." Proceedings of the 30th on

Symposium on Parallelism in Algorithms and Architectures. 2018.

Why Mini-Apps for Neuromorphic?

Benchmarking is data from an architecture – Mini-apps yield data about an architecture

• While the former is a subset of latter, they offer different insight

• Importantly, mini-apps enable means of understanding novel architectures like neuromorphic

For example – next generation architectures may progress in several ways:

Neuromorphic Mini-Apps offer a means of quantitatively investigating implications of emerging architectures

16

V0 Many-core

neuromorphic chip

V1 ?

Multi-chip

architecture
Increased neural

density

Increased

connectivity

Compound change

Conclusions

Three Mini-Apps introduced here

• Diversity of applications

• Scientific computing

• Machine learning

• Data / graph analytics

• Stress architectures in different manners

• Sparsity & density of activations and connectivity

• Deterministic vs non-deterministic

• Different workflows

• Pursue NMC advantage beyond acceleration of minimal
computational kernels

• Positions us to understand and influence emerging architectures

Fugu as an intermediate representation

• Facilitates programming and compositionality

• Provides stable framework to optimize algorithms despite evolving
hardware

17

FUGU

Neuromorphic Mini-Apps

DTMC LCA SSSP

Looking forward – continue to expand and integrate!18

FUGU

Neuromorphic Mini-Apps

DTMC LCA SSSP ?? ??

?? ????

https://github.com/SNL-NERL/Fugu

Thank you!

