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All Benchmarks Are Wrong – Some Are Useful 

Conventional benchmarks

• Defined by the processing to be executed

AI/ML benchmarks

• Sometimes defined by a particular model, other times a task or dataset

• Offers flexibility & mirrors ML

• Makes direct comparisons difficult 

And yet that’s roughly what benchmarks are for – articulating 
information about a computational approach & enabling 
comparisons
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All Benchmarks Are Wrong – Some Are Useful 

Barbosa-Silva, Adriano, et al. "Mapping global dynamics of benchmark creation and saturation in artificial intelligence." arXiv preprint arXiv:2203.04592 (2022).
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However, many of  these efforts fall flat 

• Barbosa-Silva et al. surveyed 1688 benchmarks across AI tasks 

• Of  these only 1111 are benchmarks with results at three or more times 

➢ How can we meaningfully bring insight & understanding to neuromorphic computing???



Why Mini-Apps for Neuromorphic?

From Heroux et al., 2009: “there is a middle ground for small, self-contained programs that, like 
benchmarks, contain the performance-intensive computations of  a large-scale application, but are 
large enough to also contain the context of  those computations.”

These Mini-Apps would enable:

• Interaction with external research communities

• Simulators

• Early node architecture studies

• Network scaling studies

• New language and programming models

• Compiler tuning

Influence Future Platforms

Tailor Algorithms to Platforms

Analyze Testbed Systems

Conventional systems have 

less uncertainty at algorithm 

and programming level
NMC systems have 

considerable uncertainty at 

algorithm level
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Conventional and Neuromorphic Mini-Apps

FUGU

Neuromorphic Mini-Apps?

Conventional Mini-Apps ? ? ?

Mini-Apps

Platform-

Agnostic 

Programming 

Layer

Back-Ends
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Fugu addresses two key challenges of neuromorphic programming6

Portability
Programming neuromorphic platforms requires a graph

of  neurons (nodes) and synapses (edges)

• Need to represent neural algorithms in common 

graph format

• Need ability to translate graph into backend specific 

constraints

Composability
Deploying applications on neuromorphic hardware 

requires implementing algorithms within neural circuits

• Need to be able to build applications from well 

designed kernels

• Need to take advantage of  features offered by spiking 

neuron model

Neuromorphic Mini-Apps?

? ? ?



Building Algorithms in Fugu

Scaffolds and Bricks

• Bricks provide the framework for scaffolds to build 
the computational graph
• Uses NetworkX directed graph (DiGraph)

• Contains metadata
• Synchronizing with other bricks

• Data transfer/coding information

• Neuron and synapse parameters

Neural Computation Model

• Simple leaky-integrate-and-fire (LIF) model
• Membrane potential, decay constant,

activation threshold, probability of  spike

• Point synapse model
• Synaptic weight and delay

• Instant decay (i.e. single-step integration)
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Scaffold

scaffold.circuit
(as NetworkX DiGraph) Bricks

Metadata

scaffold.graph
(as NetworkX DiGraph)

Neurons

Platform-Specific
Code (e.g. NxCore)

Neurons



Fugu – Binary streaming adder8



Initial Neural Mini-Apps

Neuromorphic is potentially good for many different classes of  computing applications
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Scientific 

Computing 
• Similar to existing 

Mini-Apps

• Well-defined tasks

Today’s Machine 

Learning
• Emphasis of much 

neuromorphic 

research

• High bar with GPUs

Tomorrow’s Artificial 

Intelligence 

(computing’s future)
• Area of biggest 

potential impact

• Poorly-defined 

algorithms



Different Mini-Apps leverage different features of spiking neurons

Mini-App / 

Kernel

Unbounded 

Fan-In

(Fan-in > 2)

Threshold

(e.g., λ>1)

Synapse 

Delays

Decay

(e.g., τ>0)

Random 

Noise

Online 

Learning

Streaming 

Arithmetic

MA#1 

Random 

Walk

MA#2 

Sparse 

Coding

MA#3 

Shortest 

Path
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Neural Mini-App Structure 

Single-line Python interface 

• python fluence_mini_app.py --run_mode loihi --neural_timesteps 10000 -v 100 -dt .02 -ss .05 -da .2 -M 200

Can run multiple backends from same function

• Currently have worked with Fugu, Loihi, SpiNNaker

Flags to set Mini-App specific parameters 

• Scaling parameters (e.g., # neuromorphic timesteps, # of  walkers)

• Implementation parameters (e.g., angle precision, time precision)

• Physics parameters (e.g., particle velocity, scattering probabilities)
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Neuromorphic Random Walk

Discrete time Markov Chain (DTMC) 

• Particle Angular Fluence: the time-integrated flux of  particles traveling through 
media given as a function of  position and velocity

• Particles travel at a constant speed and experience relative velocity scattering over 
a small region of  space

• Conventional approach models walkers & tracks states – neuromorphic models 
state & tracks walkers 

Smith, J. Darby, et al. "Neuromorphic scaling advantages for energy-efficient random 
walk computations." Nature Electronics (2022): 1-11.

12 Example Results -

Parameterization Number of total walkers, Size of direction/relative 

velocity/angular discretization, Time step size of 

simulation, Size of the state space, Size of 

positional discretization

Scaling Walkers, Mesh size

Metrics Energy cost of walkers, Time to run, Space to run 



Neural Sparse Coding

Sparse Coding or Sparse Dictionary Learning 

• Method of  modeling data by decomposing it into sparse linear combinations of  
elements of  a given overcomplete basis set

• On neuromorphic, the LASSO (least absolute shrinkage and selection operator) 
computation for sparse coding can be approximated with the spike-based algorithm 
LCA (locally competitive algorithm)

• Implemented as rate-coded neurons with inhibitory connections between competing 
dictionary elements

13 Example Results -

Parameterization Size of image, Size of image patch, Size of the 

dictionary, Stride of image patch, Desired sparsity 

Scaling Problem size via # of image patches, Parameters 

Metrics Time for setup, Time for reconstruction, 

Reconstruction performance, Reconstruction sparsity, 

Compute resource usage, Energy resource usage



Neural Graph Analysis

Single Source Shortest Path (SSSP)

• Between a source and target node, what is the shortest path (and path length) 
that connects the two

• SNN is straightforward – each vertex in the source graph is a neuron, each
edge is a synapse between neurons, & graph weights equate to delays

• The source neuron receives input driving it to spike send ensuing spikes through the
SNN

• Shortest path length is determined when the target spikes & monitoring edges can 
yield the path

14 Example Results -

Parameterization Graph generation (uniformly random tree, 

small world), Nodes, Weight range, Max 

runtime, Source, Target

Scaling Graph scale, Weight/delay range

Metrics Total time, Time for setup
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From Heroux et al., 2009: “there is a middle ground for small, self-contained programs that, like benchmarks, 
contain the performance-intensive computations of  a large-scale application, but are large enough to also 
contain the context of  those computations.”

Fugu design principles such as compositionality allow us to explore not only core computations, but also 
application context

• E.g. Random Walk mini-app illustrates this as rigorous physics simulation details are included

• Prior work has shown a neuromorphic advantage may require considering problem setup and scaling as well as the 
computation

Verzi, Stephen J., et al. "Computing with spikes: 

The advantage of fine-grained timing." Neural 

computation 30.10 (2018): 2660-2690.

Why Mini-Apps for Neuromorphic?

Parekh, Ojas, et al. "Constant-depth and subcubic-size threshold 

circuits for matrix multiplication." Proceedings of the 30th on 

Symposium on Parallelism in Algorithms and Architectures. 2018.



Why Mini-Apps for Neuromorphic?

Benchmarking is data from an architecture – Mini-apps yield data about an architecture 

• While the former is a subset of  latter, they offer different insight 

• Importantly, mini-apps enable means of  understanding novel architectures like neuromorphic

For example – next generation architectures may progress in several ways:

Neuromorphic Mini-Apps offer a means of  quantitatively investigating implications of  emerging architectures
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V0 Many-core 

neuromorphic chip

V1 ? 

Multi-chip 

architecture
Increased neural 

density

Increased 

connectivity

Compound change



Conclusions

Three Mini-Apps introduced here 

• Diversity of  applications

• Scientific computing

• Machine learning 

• Data / graph analytics 

• Stress architectures in different manners

• Sparsity & density of  activations and connectivity 

• Deterministic vs non-deterministic

• Different workflows

• Pursue NMC advantage beyond acceleration of  minimal 
computational kernels

• Positions us to understand and influence emerging architectures 

Fugu as an intermediate representation

• Facilitates programming and compositionality 

• Provides stable framework to optimize algorithms despite evolving 
hardware
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FUGU

Neuromorphic Mini-Apps

DTMC LCA SSSP



Looking forward – continue to expand and integrate!18

FUGU

Neuromorphic Mini-Apps

DTMC LCA SSSP ?? ??

?? ????



https://github.com/SNL-NERL/Fugu

Thank you! 


