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Spiking Neural Network acceleration

● Comp Neuro
○ Long history of simulators for efficiently processing sparse connectivity and activity
○ Focus on simulating single instances of (potentially very) large models
○ Historically, distributed CPU was platform of choice

● Neuromorphic hardware
○ Potential 1000-1000000x energy saving compared to standard hardware [1]
○ On-chip learning still challenging
○ Real-time isn’t fast enough for training with current data-hungry algorithms?

● ML using SNNs
○ PyTorch/TensorFlow/JAX used for GPU acceleration by treating SNN as RNNs
○ Auto diff + surrogate gradients/spike times used to train SNNs using BPTT

Frenkel, C., Bol, D., & Indiveri, G. (2021). Bottom-Up and Top-Down Neural Processing Systems Design: Neuromorphic Intelligence as the 
Convergence of Natural and Artificial Intelligence. 1–25. Retrieved from http://arxiv.org/abs/2106.01288



SNNs as computational graphs
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GeNN

● C++ library for generating SNN simulation code
● Backends to generate CUDA, OpenCL and C++ code
● All features available from Python
● Past focus on Computational Neuroscience and Neurorobotics
● Maximal user control

https://genn-team.github.io/genn/

Knight, J. C., & Nowotny, T. (2018). GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When 
Simulating a Highly-Connected Cortical Model. Frontiers in Neuroscience, 12(December), 1–19. https://doi.org/10.3389/fnins.2018.00941

Knight, J. C., & Nowotny, T. (2021). Larger GPU-accelerated brain simulations with procedural connectivity. Nature Computational Science, 1(2), 
136–142. https://doi.org/10.1038/s43588-020-00022-7

Knight, J. C., Komissarov, A., & Nowotny, T. (2021). PyGeNN: A Python Library for GPU-Enhanced Neural Networks. Frontiers in 
Neuroinformatics, 15(April). https://doi.org/10.3389/fninf.2021.659005
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SNNs in GeNN

Spike transmission isn’t instantaneous

● Breaks dependencies - model doesn’t need 
to be a directed acyclical graph

● All neuron and synapse updates can be 
fused [1]
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= 2 kernel launches ≈ 10µs latency “pipelined”

1. Knight, J. C., & Nowotny, T. (2021). Larger GPU-accelerated brain simulations with procedural connectivity. Nature Computational 
Science, 1(2), 136–142. https://doi.org/10.1038/s43588-020-00022-7



Training SNNs with symmetric eProp

Zenke, F., & Neftci, E. O. (2021). Brain-Inspired Learning on Neuromorphic Substrates. Proceedings of the IEEE, 1–16. 
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networks of spiking neurons. Nature Communications, 11(1), 3625. https://doi.org/10.1038/s41467-020-17236-y
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Extensions to GeNN

Batching

● Instantiated multiple copies of model simultaneously
● Variables e.g. weights can be shared between instances

Custom updates

● Arbitrary user-defined operations — optimizer
● Efficient matrix transpose — weight transport
● Efficient batch reduction operations (NCCL) — parallel training 



Implementing eProp
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Spiking Heidelberg Digits

● 10420 recordings
● 12 speakers
● Digits 0-9 in English and German
● Converted to 700 spike trains 

using inner ear model 

Cramer, B., Stradmann, Y., Schemmel, J., & Zenke, F. (2020). The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural 
Networks. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2020.3044364



Classification accuracy: Spiking Heidelberg Digits 

* Zenke, F., & Vogels, T. P. (2020). The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural 
networks. BioRxiv, 1–22. https://doi.org/10.1101/2020.06.29.176925



Training performance: Spiking Heidelberg Digits 

https://github.com/fzenke/spytorch

https://github.com/fzenke/spytorch


Multi-GPU training: Spiking Heidelberg Digits 



Spiking Sequential MNIST

● Pixel values of MNIST 
digits presented in 
fixed order

● Each neuron 
represents a threshold 
crossing of a gray 
value



Classification accuracy: Spiking Sequential MNIST

* Plank, P., Rao, A., Wild, A., & Maass, W. (2021). A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic Hardware. 
Retrieved from http://arxiv.org/abs/2107.03992



Inference performance: Spiking Sequential MNIST

* Plank, P., Rao, A., Wild, A., & Maass, W. (2021). A Long Short-Term Memory for AI Applications in Spike-based Neuromorphic Hardware. 
Retrieved from http://arxiv.org/abs/2107.03992



EventProp: Fully event-driven learning

Wunderlich, T. C., & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific 
Reports, 11(1), 12829. https://doi.org/10.1038/s41598-021-91786-z

https://youtu.be/oM7XEsDVcNg

https://youtu.be/oM7XEsDVcNg


EventProp: Fully event-driven learning

Wunderlich, T. C., & Pehle, C. (2021). Event-based backpropagation can compute exact gradients for spiking neural networks. Scientific 
Reports, 11(1), 12829. https://doi.org/10.1038/s41598-021-91786-z



Implementing EventProp
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Fully event-driven learning: Latency-encoded MNIST

* Zenke, F., & Vogels, T. P. (2020). The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural 
networks. BioRxiv, 1–22. https://doi.org/10.1101/2020.06.29.176925



Future direction

● Simplifications to eProp [1]
● Applying eProp and EventProp to CNNs
● Deep-R [2]
● New higher-level frontend library [3]
● FPGA backend

1. Frenkel, C., & Indiveri, G. (2022). ReckOn: A 28nm Sub-mm2 Task-Agnostic Spiking Recurrent Neural Network Processor Enabling 
On-Chip Learning over Second-Long Timescales. 2022 IEEE International Solid- State Circuits Conference (ISSCC), 1–3. 
https://doi.org/10.1109/ISSCC42614.2022.9731734

2. Bellec, G., Kappel, D., Maass, W., & Legenstein, R. (2018). Deep rewiring: Training very sparse deep networks. 6th International 
Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings, 1–24.

3. Turner, J. P., Knight, J. C., Subramanian, A., & Nowotny, T. (2022). mlGeNN: accelerating SNN inference using GPU-enabled neural 
networks. Neuromorphic Computing and Engineering, 2(2), 024002. https://doi.org/10.1088/2634-4386/ac5ac5

https://doi.org/10.1109/ISSCC42614.2022.9731734
https://doi.org/10.1088/2634-4386/ac5ac5
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