Information Theory Limits of Neuromorphic Energy Efficiency

Pau Vilimelis Aceituno
Institute of Neuroinformatics (UZH/ETH)
Motivation

- **Neuromorphic systems are energy efficient**
 - How efficient can they be?
 - How do we design them?

- **Neuromorphic systems are (very) heterogeneous**
 - Do we need a new energy analysis for every system?
 - Or for every problem?

- **Warning: this is only theoretical**
Approach: Information theory

- **History**
 - Right language for information is to use symbols and probabilities
 - Proved that reliable communication on unreliable hardware works

- **Main approach**
 - Minimize cost (code length) → With equal costs for 1/0
 - While respecting code decodability
Source Coding: Combinatorial view

- **Simple example:**
 - Encode 125 symbols, constant activations
 - Each neuron costs 1, each activation costs +1

Similar to Levy & Baxter, Neural Computation 1996
Source Coding: Analytical view

Problem:

\[N^*, A^* = \arg \min_{N,A} \sum_{s=1}^{S} p_s c(a(s), N) \quad s.t. \quad S \leq \sum_{a=1}^{A} \binom{N}{a} \]

Solution:

\[N^* = \arg \min_{N} \sum_{s=1}^{S} p_s c \left(NH^{-1} \left(\frac{\ln(s)}{N} \right), N \right), \quad A^* \approx NH^{-1} \left(\frac{\ln(S)}{N} \right) \]

Analytical tricks: Stirling’s approx. and Laplace’s method

\[\binom{N}{a} \sim exp[NH_2(\frac{a}{N})] \]

\[\lim_{N \to \infty} \int exp[Nf(x)]dx \sim exp[Nf(x)] \]
Noisy Channel Coding: Hand-wavy view

Each Codeword is perturbed by noise and the limit of that noise defines a “ball” of possible codewords.

- Each activity level has “volume” $H(a/N)$
- Each Codeword occupies volume in multiple levels
- **How to distribute codeword volume without overlap?**
Moving from 1-0 to numbers is ok:
- n spikes is a different symbol → entropy approximation works

The approximations are on orders of magnitude
- If you try for 100 neurons it won’t work

Information theory has trouble with structure
- If encoding values is unintuitive

Neuroscience has very heterogeneous neurons
- If there are no heavy-tailed distributions it works
Acknowledgements

- **People who helped**
 - Jean-Pascal Pfister (U. Bern)
 - Hui-An Shen (U. Bern)
 - Stephan Moser (ETH)

- **Non-people who payed/hosted**
 - Institute of Neuroinformatics (UZH/ETH)
 - Grewelab
 - ETH Postdoctoral fellowship