

Information Theory Limits of Neuromorphic Energy Efficiency

Pau Vilimelis Aceituno Institute of Neuroinformatics (UZH/ETH)

Motivation

Neuromorphic systems are energy efficient

- How efficient can they be?
- How do we design them?

Neuromorphic systems are (very) heterogeneous

- Do we need a new energy analysis for every system?
- Or for every problem?

Warning: this is only theoretical

Approach: Information theory

- History
 - Right language for information is to use symbols and probabilities
 - Proved that reliable communication on unreliable hardware works
- Main approach
 - Minimize cost (code length) \rightarrow With equal costs for 1/0
 - While respecting code decodability

Source Coding: Combinatorial view

• Simple example:

- Encode 125 symbols, constant activations
- Each neuron costs 1, each activation costs +1

Similar to Levy & Baxter, Neural Computation 1996

Source Coding: Analytical view

S symbols with prob **p**_s, **A** maximum number of active neurons, **N** neurons, the cost of each activation is **c(a,N)** <u>Problem:</u> $N^*, A^* = \arg\min_{N,A} \sum_{s=1}^{S} p_s c(a(s), N) \quad s.t. \quad S \leq \sum_{a=1}^{A} \binom{N}{a}$ <u>Solution:</u> $N^* = \arg\min_{N} \sum_{s=1}^{S} p_s c\left(NH^{-1}\left(\frac{\ln(s)}{N}\right), N\right), \quad A^* \approx NH^{-1}\left(\frac{\ln(S)}{N}\right)$

Analytical tricks: Stirling's approx. and Laplace's method

$$\binom{N}{a} \sim exp[NH_2(\frac{a}{N}))] \qquad \lim_{N \to \infty} \int exp[Nf(x)]dx \sim exp[Nf(x)]$$

Noisy Channel Coding: Hand-wavy view

Each Codeword is perturbed by noise and the limit of that noise defines a "ball" of possible codewords

- Each activity level has "volume" H(a/N)
- Each Codeword occupies volume in multiple levels
- How to distribute codeword volume without overlap?

Limitations and Non-limitations

Moving from 1-0 to numbers is ok:

- n spikes is a different symbol \rightarrow entropy approximation works

SThe approximations are on orders of magnitude

- If you try for 100 neurons it won't work

SInformation theory has trouble with structure

- If encoding values is unintuitive

Weuroscience has very heterogeneous neurons

- If there are no heavy-tailed distributions it works

Acknowledgements

People who helped

- Jean-Pascal Pfister (U. Bern)
- Hui-An Shen (U. Bern)
- Stephan Moser (ETH)

Non-people who payed/hosted

- Institute of Neuroinformatics (UZH/ETH)
- Grewelab
- ETH Postdoctoral fellowship

