

Evaluating parameter tuning and real-time closed loop simulation of large scale spiking networks before mapping to neuromorphic hardware: Comparing GeNN and NEST

Felix J. Schmitt, 01.04.2022, NICE 2022

Motivation

Big challenges for computational neuroscience labs:

- Prototyping
- Parameter calibration
- Closed-loop simulations
- Large networks 10k 10 mio. neurons

Benchmark: Spiking cortical attractor model

- Challenging model
 - Dense network connectivity density >>0.25
 - Metastable activity

Parameter space

Parameter space of	
spiking neural networks	
are large	

Parameter	
N_E	g
N_I	J_E
E_L	J_{EI}
V_{th}	J_{IE}
V_r	J_{II}
C	I_{thE}
$ au_m^E$	I_{thI}
$ au_m^I$	I_{stim}
$ au^E_{sun}$	N_Q
$ au^{I}_{syn}$	J_{E+}
$ au_r$	R_J
p_{EE}	p_{EI}
p_{IE}	p_{II}

Parameter space

- Parameter space of spiking neural networks are typically very large
- Even simple networks can have very different regimes of operation

inhibitory neurons excitatory neurons

Parameter space

- NEST (CPU-based):
 - o **12h 45m**
- GeNN (GPU-based):
 - State-of-the-art GPU (A6000): 1h 15m Speedup: 10 times
 - Low budget GPU (GTX 970): 3h 40m
 Speedup: 3.5 times

Simulation time vs. network size

- Real-time factor scales ~linearly with number of synapses
- NEST can simulate up to 15k neurons in real-time
- GeNN can simulate up 100k neurons in real-time on a state-of-the-art GPU

GeNN: closed-loop large-scale network

Average time per 10 ms loop: 108 ms

GeNN: closed-loop large-scale network

20 clusters, 25,000 neurons

Average time per 10 ms loop: 108 ms

Challenge: Associative learning in insects

 Challenge: small network with 140 neurons has to be simulated over long periods (~30 minutes)

Conclusion

- GPU based simulation with **GeNN is in advantage for large network size or** real-time simulation
- CPU based simulation with **NEST is ideal for prototyping with easy access** to the non-expert programmer

Thank you for your attention.

I especially thank James Knight for his help with GeNN.

References:

[Rostami et al. 2020]	Rostami, V., Rost, T., Riehle, A., van Albada, S. J., & Nawrot, M. P. (2020). Spiking neural network model of motor cortex with joint excitatory and inhibitory clusters reflects task uncertainty, reaction times, and variability dynamics. <i>bioRxiv</i> .
[Litwin-Kumar & Doiron 2012]	Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. <i>Nature neuroscience</i> , <i>15</i> (11), 1498-1505.
[Gewaltig et al. 2007]	Gewaltig, M. O., & Diesmann, M. (2007). Nest (neural simulation tool). <i>Scholarpedia</i> , 2(4), 1430.
[Yavuz et al. 2016]	Yavuz, E., Turner, J., & Nowotny, T. (2016). GeNN: a code generation framework for accelerated brain simulations. <i>Scientific reports</i> , 6(1), 1-14.
[Knight et al. 2021]	Knight, J. C., Komissarov, A., & Nowotny, T. (2021). PyGeNN: A Python Library for GPU-Enhanced Neural Networks. <i>Frontiers in Neuroinformatics</i> , <i>15</i> .