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Introduction and Motivation

• Robust sensor-aided localization
• Applications to strategies for intelligent navigation directly from on-board sensors in challenging 

environments and/or with resource constraints (e.g. terrain relative navigation)
• We take a neuro-inspired model of distributed grid-based computation and apply it in the 

context of navigation-based datasets (e.g. digital elevation models)

• Neural inspiration from grid cells
• Hippocampal representation of space using grid cells (in addition to place cells)
• Characterized by a periodic, hexagonal tiling with different spatial scales, orientations, and offsets
• Intersection of multiple grid modules can be decoded yield unique locations
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Grid cell activations of the rat hippocampus collected over 
square arena [Moser et al. Place Cells, Grid Cells, and Memory] 

Intersection of multiple grid modules encode locations in 1D (a) and 3D (b) space [(a) Bush et al. Using Grid Cells 
for Navigation; (b) Klukas et al. Flexible representation of higher dimensional cognitive variables with grid cells]



3 Grid Cell Activations Over a Map

Equations for grid cell activations 
[Solstad et al. From grid cells to place 
cells: a mathematical model]

Sample grid cells of distinct periods, orientations, and offsets overlaid on the 
same elevation map. Centroids correspond to locations with high activation.

• Overlaying grid cell activations onto digital elevation models (DEMs) provides a 
grid-based representation of locations
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Grid modules defined by shared period and orientation, whereas their 
“phase” determines their offset w.r.t. a reference point (e.g. 𝜙 = (0,0))

Representation of a location (x,y) using:
• Grid cell activations (left)

• Grid module phases (right)

Grid modules: 1          2                        3
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Representing Locations Using Grid Modules

• Refinement of grid-based representation from individual grid cell activations to grid 
module phase codes enables greater representation and more tractable computation
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0 noise 𝜋/4 noise

2𝜋/3 noise

𝜋/2 noise

Sample coincidence maps of different locations decoded 
using 60 grid modules for increasing levels of coding noise

Decoding Accuracy and Robustness

• Redundancy through the use of multiple grid 
modules results in strong accuracy and 
robustness properties in location estimates
• Decoded coincidence maps maintain strong signal 

to noise ratio of the intersection point despite 
coding noise (e.g. zero-centered, uniform)

𝜋 noise



6 Encoding to Grid Module Phase Codes

• We perform a distributed correlation over the grid modules from sensor inputs
• Here, elevation contours are transformed onto possible phase code candidates

Individual Location Transform

Full Contour Transform



7 Encoding to Grid Module Phase Codes

• Spatial displacement corresponds to phase shifts and can be integrated with respect 
to a reference time/location from multiple measurements

Phase Code Estimates over multiple Grid Modules
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8 Decoding to the Location Estimate

• By summing the grid cell activations corresponding to grid module phase codes, we 
can compute a “coincidence map” to find where they may uniquely intersect
• This computation is scalable, where only a subset of grid modules is required for 

successful decoding, and grid modules can be encoded/trained independently



9 Summary and Future Work

Goal: leverage neuro-inspired 
strategies in support of 

intelligent navigation

• We showed simulations on navigation-based datasets (DEMs) 
applying our neuro-inspired model of distributed grid-based 
computation to localize from a set of elevation inputs
• Current and Future Work

• Analysis of tradeoff spaces (e.g. computation, storage costs, robustness)
• Learning/training phase candidates from data (e.g. mapping part of SLAM)
• Adaptation of localization algorithm to different datasets, sensor and 

noise models, and integration with filters (e.g. EKF update)
Sample Measurements over Point Cloud Coincidence Map from Estimated Phase CodePhase Code Estimates over multiple Grid Modules

Single location, randomly 
sampled measurements: 
grid-based localization 
algorithm applied to a 
rasterized point cloud 
dataset (UT-Austin)



10 Backup: Representing Locations Uniquely

• To represent locations uniquely, we need the phase code dimensions to be orthogonal
• This is achieved by performing an affine/shear-like transformation per grid module
• With period and orientation fixed per grid module, the phase corresponds to the offset of the 

corresponding grid cell that is maximally active at the encoded location
• This is computed using the modulo operator in the orthogonalized space
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Sample grid cell activation transformed into orthogonalized space (and thresholded image for clarity)

Affine 
transform

Modulo 
operation


