

Co-simulation in the Modular Science Framework

Controlling complexity

Wouter Klijn, Cristian Jimenez-Romero, Kim Sontheimer, Muhammad Fahad , Rolando Ingles Chavez, Lena Oden, Abigail Morrison

The Brain is a complex multi-scale system

EBRAINS

— 2

Simulate with EBRAINS – November 2022

Multi application co-simulations are fragile

The probability of the whole system failing increases with the number of connected applications. Shown here is the probability of a system failing as a function of the number of connected applications. A failure rate of 0.03 is taken from an highly optimized system which is running automatically generated job configurations. The higher failure rates are not unrealistic for human generated configurations. The co-sim use-cases have 9 (3 simulator) and 4 (robotics) connected applications.

The modular science framework provides a set of integrated micro service based applications to help control the complexity by managing and monitoring the execution.

EBRAINS

Selection of mini service applications part of Modular Science

The application companion. A lightweight application for managing and monitoring of integrated applications. It add non-science capabilities to a second application; Synchronization and coordination, application execution, performance/Memory profiling, up state monitoring.

It is a (optionally) standalone mini Python application. Runs isolated on core 0, minimally additional modules to be installed as most functionality is written as part of the mini application.

Future work: plugin system to add new capabilities to monolithic applications steering, multi-tiered memory, check pointing

The Interscale hub. A lightweight application for handling data transfer, transformation and science.

Different scales of abstraction typically 'speak' a different language. This necessitates a coupling mechanism to allow transformation between the scaless. The methods and computational needs of this transformation are not fully understood. Modular science has module dedicated to this task. It isolates the engineering and science challenge allowing each to be optimized and changed as needed.

Currently supported out of the box is the Elephant analysis which can be used in a in-situ / streaming fashion allowing you to use this state of the art tool in your co-simulations.

— 4

Further information and acknowledgements

Description	URL	
MS/ Multiscale Cosim architecture and design document (v1.0)	https://drive.ebrains.eu/d/9050f6873f8945fbacaf/	
The central repo which contains the Kanban board for issue tracking	https://github.com/multiscale-cosim/EBRAINS-cosim	
NEST-TVB (two-way) coupling use-case 1	https://github.com/multiscale-cosim/TVB-NEST-usecase1	
InterscaleHUB for inter-scaled data exchange	https://github.com/multiscale-cosim/EBRAINS-InterscaleHUB	
Rich Endpoint (Orchestrator, Application Companion, etc.)	https://github.com/multiscale-cosim/EBRAINS-RichEndpoint	

Other links: Central Repo with canban board: <u>https://github.com/multiscale-cosim/EBRAINS-cosim</u> Bootstrap and setup files: <u>https://drive.ebrains.eu/d/afd7d3cba65e4926bcb7/</u> Communication protocols: <u>https://drive.ebrains.eu/d/028959c139c349329624/</u> Use-case template: <u>https://github.com/multiscale-cosim/ModularScience-Cosim-Template</u>

fz-juelich.de Abigail Morrison, Thomas Lippert, Wouter Klijn, Lena Oden, Sandra Diaz, Kim Sontheimer, Thorsten Hater, Jochen Martin Eppler, Michiel van der Vlag, Cristian Jimenez-Romero, Rolando Ingles Chavez, Muhammad Fahad, Michael Denker		uni-freiburg.de Sebastian Spreizer, Sebastian Schmitt	kip.uni-heidelberg.de Eric Mueller
univ-amu.fr	in.tum.de	charite.de	uni-trier.de
Viktor Jirsa, Lionel Kusch , Marmaduke Woodman	Michael Weberu	Petra Ritter, Dionysios Perdikis	Benjamin Weyers, Jörg Rudnick
nmbu.no	we.ac.uk		clinic.cat
Gaute Einevoll, Espen Hagen , Hans Ekkehard Plesser, Torbjørn Vefferstad Ness	Martin Pearson		Arnau Manasanch

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 785907 (HBP SGA2). Specific Grant Agreement 3 (04/2020-03/2023)

This project/research has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (HBP SGA3). Specific Grant Agreement 'Interactive Computing E-Infrastructure for the Human Brain Project – ICEI' (01/2018-03/2023)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800858 (HBP SGA ICEI).

Simulate with EBRAINS Simulate with EBRAINS

www.humanbrainproject.eu

www.ebrains.eu

