Leveraging Sparsity of SRNNs for Reconfigurable and Resource-Efficient Network-on-Chip

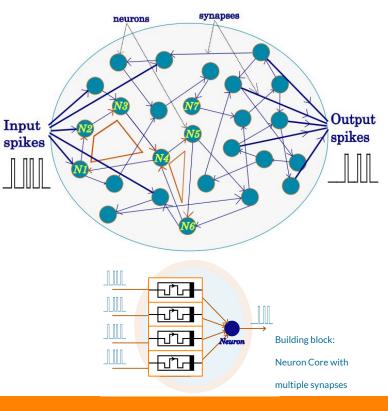
> Manu Rathore and Garrett S. Rose The University of Tennessee, Knoxville

> > NICE'2024 04.24.24

TENNES

Overview

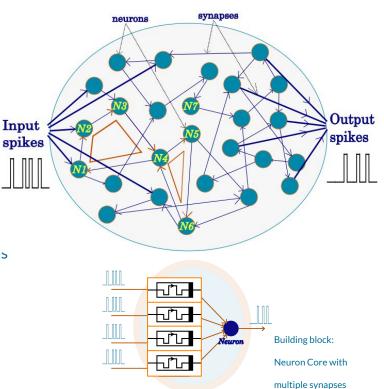
- Introduction
- Motivation
- Proposed NoC Architecture
- Leveraging Sparsity using the NoC
- Implementation and Results
- Conclusion



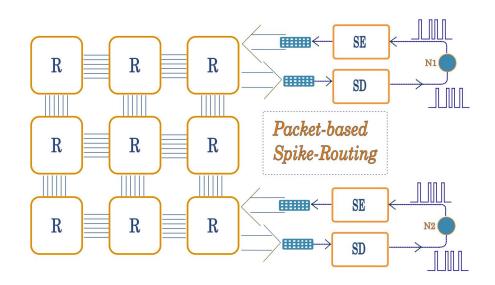
- Spiking Recurrent Neural Network (SRNN)
 - resource-efficient low-power solution
 - Less neurons can achieve high computational

performance

- nonlinear signal processing and control applications
- Utilizing analog timing information of spike data
- Reconfigurable implementation on hardware challenging
 - \circ Network-on-Chip (NoC) to support reconfigurable


connectivity

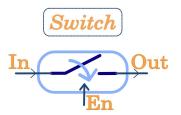
- <u>Reconfigurable NoC</u> requirements:
 - ✓ Connections between any two arbitrary neurons
 - ✓ Low-power and area-efficient
 - \checkmark High fidelity and minimal degradation
 - ✓ Preserving spike timing and synchronization information
 - ✓ Scalable
 - ✓ Flexibility of design space to include multiple viable routing paths
- NoC be circuit-switched or packet-switched
- Constrained by physical wiring limits

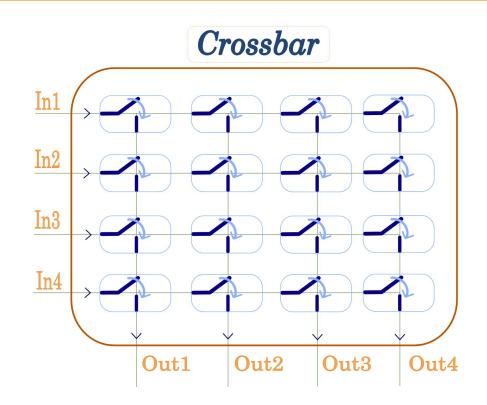


- Existing Solutions : multi-bit packet-based
- While scalable, <u>added performance overhead</u> for

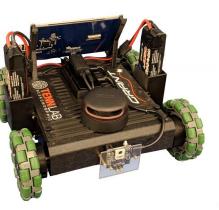
proximal neurons

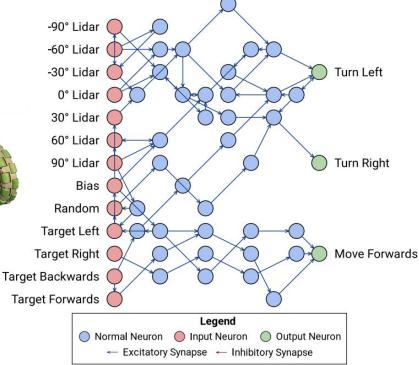
- Spike encoder/decoder
- Routers
- Extra wires for addresses
- Advantage of spiking low-power data compromised





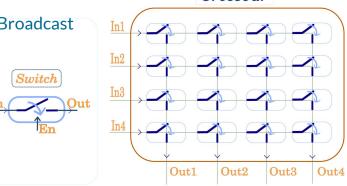
- Existing Solutions : Circuit-switched crossbars
- Simple and easy to implement, but
 - Only one possible datapath between a set of input-output
 - Scales multiplicatively
 - No. of switches = input x output

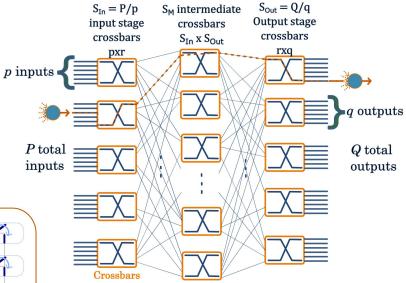



Leveraging Sparsity of SRNNs for Reconfigurable and Resource-Efficient Network-on-Chip

Motivation

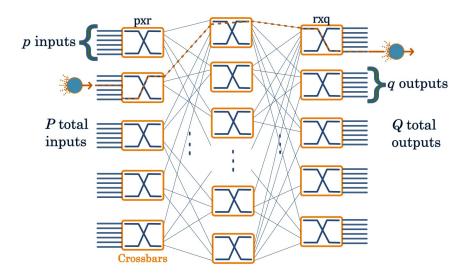
- Network structures that inform NoC architecture
- Neuromorphic Targeter[1]
- Small network
 - Packet-based
 - approach unnecessary
- Sparse Connectivity
 - Crossbar NoC assumes fully-concurrently
 - connected network





Proposed NoC

- Spike-routing Circuit-Switched Network-on-chip
- SpiCS-Net: "spikes-as-spikes"
- Circuit-Switching : establish direct wired connection
- Clos topology[1]: multiple smaller crossbars; achieve full connectivity with less switches
- Unicast, Multicast or Broadcast
- Delay agnostic



Problem of connecting P inputs to Q outputs Problem of connecting p inputs to q outputs

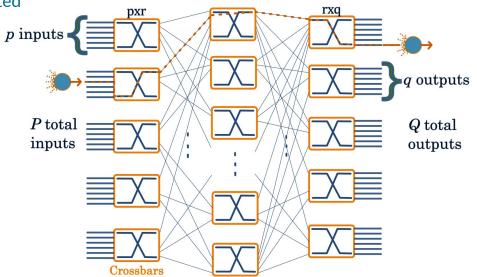
Conditions on SpiCS-Net parameters for multicast

non-blocking implementation,

$$r <= p+q-1, \quad P/p < Q/q, \quad r > p, \quad r > q$$

SpiCS-Net Design for specific SRNN size

 N_n = number of neurons


C_{max} = Maximum number of connections for fully-connected

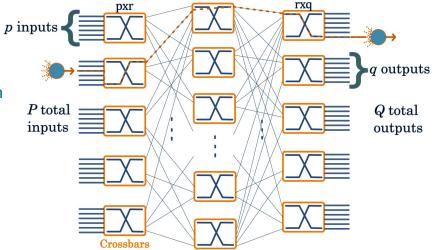
SRNN

$$C_{max} = 2 * \binom{N_n}{2} = N_n(N_n - 1)$$

Limiting by fan-in and fan-out per neuron

 $C_{max} = N_n * max(S_{in}, S_{out})$

Manu Rathore and Garrett S. Rose "SpiCS-Net : Circuit Switched Network on Chip for Area-Efficient Spiking Recurrent Neural Networks". IEEE VLSID 2024

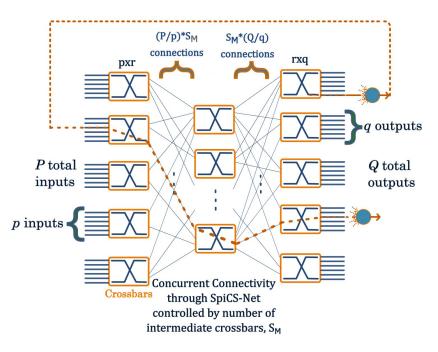

SpiCS-Net Design for specific SRNN size

The maximum possible unicast connections through the NoC

are given by,

$$C_{max} = max(P,Q)$$

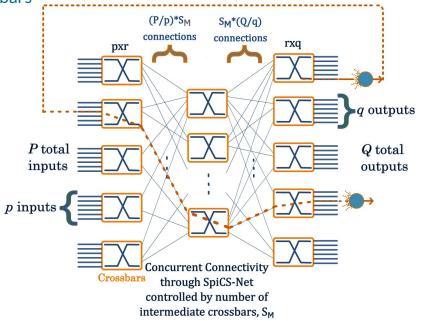
This can be related back to C_{max} for specific sized SRNN, with neuron core fan-in and fan-out.



Manu Rathore and Garrett S. Rose "SpiCS-Net : Circuit Switched Network on Chip for Area-Efficient Spiking Recurrent Neural Networks". IEEE VLSID 2024

Leverage Network Sparsity using SpiCS-Net

- Concurrent Connectivity: Max connections established
 simultaneously
- Tuning Concurrent Connectivity by modifying number of crossbars in middle stage
- Without affecting the capability of connection between any set of neurons


Leverage Network Sparsity using SpiCS-Net

Concurrent Connectivity for S_M bar crossbars instead of S_M crossbars

$$CC_{\bar{S}_M} = C_{max_{nw}} - max\left(\frac{P}{p}(S_M - \bar{S}_M), \frac{Q}{q}(S_M - \bar{S}_M)\right)$$

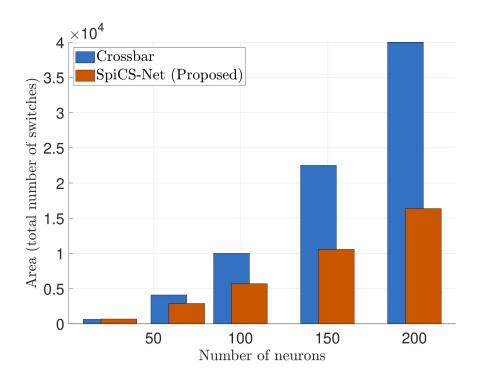
Concurrent Connectivity percentage,

$$CC_{percent} = \left(\frac{CC_{\bar{S}_M}}{C_{max_{srnn}}}\right) * 100$$

Leveraging Sparsity of SRNNs for Reconfigurable and Resource-Efficient Network-on-Chip

Main ideas

- <u>Circuit-Switched Clos</u> Network
 - Area and Power efficient when compared to packet-based approaches for proximal neurons
- <u>Leveraging Sparseness</u>
 - Blocking property of Clos topology for further area/power savings on-chip
 - Not all connections that are supported by the NoC need to be established at the same time

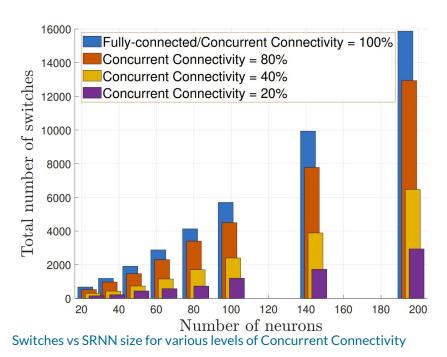


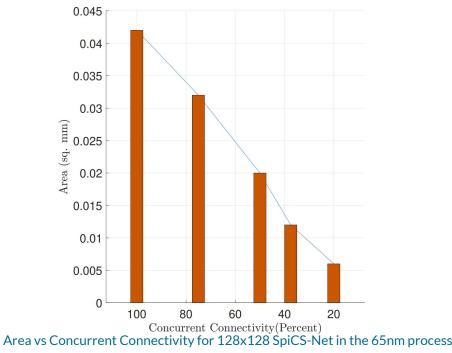
SpiCS-Net Implementation

• Switch can be designed to handle digital/analog

spikes

- Digital Implementation details:
 - MUX based implementation in System Verilog
 - \circ Synthesized to 65 nm IBM CMOS10LPE
 - Results from post-layout simulations





Leverage Network Sparsity using SpiCS-Net

• Number of switches relates directly to area, power and memory requirements on the chip

Leveraging Sparsity of SRNNs for Reconfigurable and Resource-Efficient Network-on-Chip

Leverage Network Sparsity using SpiCS-Net

• Area on-chip for varying Concurrent Connectivity comparison with packet-based Network-on-Chip

Architectures

Design	$Area(mm^2)$	Relative Area	
SpiCS-Net* 128x128 $CC_{percent}$ = 37.5%	0.012	1x	
SpiCS-Net* 128x128 $CC_{percent} = 75\%$	0.032	2.6x	
SpiCS-Net* 128x128 $CC_{percent} = 100\%$	0.042	3.5x	
(non-blocking)	0.042	0.0A	
SpiCS-Net* 128x128 (strictly non-blocking)	0.08	6.6x	
ClosNN 128×128 (45nm) [1]	0.904	75x	
H-NoC 400 neurons (65nm) [2]	0.587	15.65x (scaled)	

* SpiCS-Net (65nm)

Results

	3DNoC-SNN[1]	ClosRNN [2]	H-NoC [3]	Crossbar	SpiCS-Net (this work)
Technology	45 nm	45nm	65 nm	65 nm	65 nm
Size	3x3x4	128x128	400 neurons	128x128	128x128
Switching Technique	Packet	Packet	Packet	Circuit	Circuit
Packet Size	31-bit	32 bit	48 bit	1-bit	1-bit
Structure	3D Packet-based	Clos Packet-based	Hierarchical Star-Mesh	Crossbar	Clos Circuit-switched
Area (sq. mm)	0.031 (per Router)	0.904	0.587	0.2	0.042
Power Consumption	10.13 mW (Inverted Pendulum)	0.85 mW (ECG)	13.16 mW (Wisconsin)	-	7.5 uW (Mackey-Glass: Reservoir Computer)
Throughput	0.0313 spike/node/cycle	-	3.3 × 10 ⁹	4.7 × 10°	3.6 × 10 ⁹

Results

- Up to 4.5x savings in area compared to packet-based NoCs with Nonblocking Connectivity
 - No packet-handling circuit overhead
- Up to 6.3x savings in area compared to packet-based NoCs with 75% Concurrent Connectivity
 - Leverage sparsity
- 9% higher throughput
 - Spikes transmitted per second
- Substantial savings in power compared to packet-based approaches in literature
 - Fully- Combinational NoC without any switching activity other than the spike itself
 - No dynamic clock-associated power

Conclusion

- Spiking Recurrent Neural Networks offer high computation power even with less neurons owing to recurrent connectivity
- Reconfigurable NoC for these systems pose unique challenges
- Proposed SpiCS-Net architecture is highly efficient circuit-switched and delay agnostic approach for proximal neurons
- Dedicated wires : no spike-collision or loss concerns
- Can be tailored for analog and digital spikes

Thank you!

