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Neuroscience Inspired Neural Network Simulation

• Modeling and Simulation integral for 

neuroscience research

• Simulations carried out by solving the 

dynamics of bio-plausible networks of neurons 
and synapses

• STACS – Simulation tool for Asynchronous 

Cortical Stream enables large scale HPC 
simulation of neuroscience model

• Analyzing the simulation data - How do we 

interpret the large-scale results?

– Employ deep learning models to process 
temporal data

– Scalable deep learning models along with 

neural simulations

• Felix Wang, Simulation Tool for Asynchronous  Cortical Streams (STACS): Interfacing with Spiking Neural Networks, Procedia Computer Science, Volume 61, 2015, Pages 322-327.
• F. Wang, et al., “Scaling neural simulations in STACS”, IOP Neuromorphic Computing and Engineering, April 2024.

• Reservoir network of excitatory and 

inhibitory neurons (80-20)

• Izhikevich neurons and plastic synapses

• Simulation carried for 180 seconds with 

spike timing dependent plasticity
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Neural Data Representation

• Reservoir network of E-I spiking neurons

– 800 excitatory neurons

– 200 inhibitory neurons

• Simulated by applying random thalamic 
noise input

– Output spikes at an average rate of 10 Hz per 
neuron

• Spike trains for neuron 𝑖 at times 𝑡𝑓:

 𝑆𝑖 𝑡 = σ𝑡𝑓 𝛿(𝑡 − 𝑡𝑓) 

• Smoothened spike signals using kernel 𝛼 𝑡 =

𝑒−
𝑡

𝜏. H(𝑡 − 𝑡𝑓):
෫𝑆𝑖(𝑡) = 𝑆𝑖 𝑡 ∗ 𝛼 𝑡

• Running average spike rates over 𝑇𝑤:
𝑅𝑖 𝑡 = σ𝑆𝑖(𝑡: 𝑡 + Tw)/Tw

• Causal components:

– Combines underlying structure and 
network activity

– Adjacency matrices over a temporal 
window 𝜏

– Ω for a spike traveling from neuron 𝑖 to 𝑗*:

Ω𝑖,𝑗 = 𝑊𝑖 ,𝑗 × 𝑒
(𝑡𝑗

𝑓
−𝑡𝑖

𝑓
)/𝜏

× 𝐻(𝑡𝑗
𝑓

− 𝑡𝑖
𝑓

− 𝛿𝑖 ,𝑗)

𝑆𝑖 𝑡

෫𝑆𝑖(𝑡)

𝑅𝑖 𝑡

* Theilman, B. H., Wang, F., Rothganger, F., & Aimone, J. B. (2023). Decomposing spiking neural networks with Graphical Neural Activity 
Threads. arXiv preprint arXiv:2306.16684.
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Research goals

• Can deep learning models: 

– be alternative to reduced order representation?

– Help predict spike sequences in an SNN?

– Explain the transition of spike activity over time?

• Our approach:

– Capture a reduced order representation of neuron states

– Capture attention of each neuron for the SNN spike prediction activity
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Long Short Term Memory (LSTM) Autoencoder

• Use LSTM Autoencoder model for sequence 
reconstruction

• SNN simulation spikes divided into sequences 
of 20 timesteps

• Use Spike traces ( ෪𝑆(𝑡)) as inputs and targets

• Encoding layer captures a low order encoding 
with 100 units

• Model presented trained with 6K sequences 
for 1000 epochs
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Sample outputs from trained LSTM – AE model

Reconstructed output tracks the temporal regions of 
high spikes as seen in the input sample.

Embedded output static over the 20 timestep interval
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Encoder outputs from LSTM-AE

• Mean and variance of the encoded 

outputs across all test samples

• Overall low variation for a 20 

timestep sequence

• LSTM captures the compressed 

representation of the sparse SNN 

activity, but not the temporal 

variations
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Temporal Fusion Transformer (TFT) Model

• TFT -  Aggregation of LSTM embedding 
plus attention mechanism 

• Problem to be solved – multi-variate 
(neuronal spike rates) time series 
forecasting 

• Input history sequence:

– Multi-variate spike rate sequences 𝑅𝑡:𝑡+𝑡𝑚

• Known Inputs:

– Time step values 𝑡

– Neuron ids 𝑖

• Target: Predict spike rates for 𝑡ℎ timesteps 
in the future

• Analyze attention weights across 
different neurons 
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TFT prediction results

• Task: Prediction over the average network 
spike rate sequence

• TFT successfully predicts peak spike rates 
for (𝑡 + 1)𝑡ℎ timestep

• Task: Predicting individual neuronal spike 
rates

• TFT successfully captures the binarized 
spike rates for each neuron
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Spike Sequence Prediction with TFT

TFT successfully predicts the spike rates for successive timesteps for each neuron
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Analyzing attention weights

• Self-attention weights of TFT of size 𝑁 × 𝑘 × 𝑚

• Correlation among the mean attention weights for all test samples 
high for connected neurons in the network

• TFT Attention Similarity: High similarity among average connectivity 
weight and attention weights of all N neurons

• Spike activities among neurons have short-range temporal 
dependencies.

Ground Truth: 
Network adjacency 

heat-map
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TFT Attention weights and Causality

• Computed causality adjacency 
matrices over entire simulation T

– 𝑁 × 𝑁 sized matrix

• Dot product similarity of mean attention 
weights (for all test samples) with 
network’s causality components (Ω𝑖,𝑗)

• High similarity for connected neurons
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Summary and Conclusion

• Demonstrated two Deep Learning models – LSTM and transformers to 
analyze sparse neural data

• Application of DL models for performing underlying tasks along with 
representing the underlying architecture for sparse spike signals

• Models of LSTM and TFT are scalable on HPC, hence, could be applied to 
very large-scale neural simulation

• Future directions – 

– Developing reduced order cognitive learning models

– Demonstrate scalability over large-scale simulations

– Causal representation to interpret relation between different neuronal groups

– Causal representation for codesigning energy-efficient SNN hardware
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Thank you!

Questions?

Contact:
tabassuma@ornl.gov
lims1@ornl.gov
kulkarnisr@ornl.gov

mailto:tabassuma@ornl.gov
mailto:lims1@ornl.gov
mailto:kulkarnisr@ornl.gov
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