6th March 2020: We are sorry to announce that NICE 2020, scheduled to be held on March 17-20 2020, will be postponed to a later date. Please see here for the new date in March 2021
NEUROTECH event: Future Application Directions for Neuromorphic Computing Technologies: agenda and registration (free, but mandatory). A half-day event with special focus on potential application of neuromorphic computing.
Travel info:
Getting to the venue:
the nearest tram stop to the meeting venue is "Heidelberg Bunsengymnasium" (marked in the map linked above) [online timetable]https://reiseauskunft.bahn.de//bin/query.exe/en?Z=Neuenheim+Bunsengymnasium,+Heidelberg), provided by German Railway. Here you can also buy tickets online
via Railway from the train station directly attached to the airport "Frankfurt Flughafen Fernbahnhof": online timetable by German Railway (tickets are also sold online via this website)
via airport shuttle service directly to the hotel. We have good experience with TLS Heidelberg. A single, shared ride costs about 40 Euro / person / ride
Hotels:
These hotels are relatively close to the meeting venue (Kirchhoff-Institute for Physics, see the map above). A lot more hotels are listed in online hotel booking sites (e.g. on booking.com)
NICE 2020, workshop day III -- NOTE: NICE will be postponed!
09:00‑09:15 (15 min)
Welcome / overview
09:15‑09:55 (40+5 min)
Keynote: Bottom-up and top-down neuromorphic processor design: Unveiling roads to embedded cognition
While Moore’s law has driven exponential computing power expectations, its nearing end calls for new roads to embedded cognition. The field of neuromorphic computing aims at a paradigm shift compared to conventional von-Neumann computers, both for the architecture (i.e. memory and processing co-location) and for the data representation (i.e. spike-based event-driven encoding). However, it is unclear which of the bottom-up (neuroscience-driven) or top-down (application-driven) design approaches could unveil the most promising roads to embedded cognition. In order to clarify this question, this talk is divided into two parts.
The first part focuses on the bottom-up approach. From the building-block level to the silicon integration, we design two bottom-up neuromorphic processors: ODIN and MorphIC. We demonstrate with measurement results that hardware-aware neuroscience model design and selection allows reaching record neuron and synapse densities with low-power operation. However, the inherent difficulty for bottom-up designs lies in applying them to real-world problems beyond the scope of neuroscience applications.
The second part investigates the top-down approach. By starting from the applicative problem of adaptive edge computing, we derive the direct random target projection (DRTP) algorithm for low-cost neural network training and design a top-down DRTP-enabled neuromorphic processor: SPOON. We demonstrate with pre-silicon implementation results that combining event-driven and frame-based processing with weight-transport-free update-unlocked training supports low-cost adaptive edge computing with spike-based sensors. However, defining a suitable target for bio-inspiration in top-down designs is difficult, as it should ensure both the efficiency and the relevance of the resulting neuromorphic device.
Therefore, we claim that each of these two design approaches can act as a guide to address the shortcomings of the other.
NICE 2020, Tutorials day: NOTE: NICE will be POSTPONED!
The tutorial day can be booked as one of the registration options. On the tutorial day hands-on interactive tutorials with several different neuromorphic compute systems will be offered:
Intel Loihi platform tutorial (Lecture style. To follow along from your own laptop your need to engage with Intel’s Intel’s Neuromorphic Research Community beforehand (email inrc_interest@intel.com for more information).