6th March 2020: We are sorry to announce that NICE 2020, scheduled to be held on March 17-20 2020, will be postponed to a later date. Please see here for the new date in March 2021
NEUROTECH event: Future Application Directions for Neuromorphic Computing Technologies: agenda and registration (free, but mandatory). A half-day event with special focus on potential application of neuromorphic computing.
Travel info:
Getting to the venue:
the nearest tram stop to the meeting venue is "Heidelberg Bunsengymnasium" (marked in the map linked above) [online timetable]https://reiseauskunft.bahn.de//bin/query.exe/en?Z=Neuenheim+Bunsengymnasium,+Heidelberg), provided by German Railway. Here you can also buy tickets online
via Railway from the train station directly attached to the airport "Frankfurt Flughafen Fernbahnhof": online timetable by German Railway (tickets are also sold online via this website)
via airport shuttle service directly to the hotel. We have good experience with TLS Heidelberg. A single, shared ride costs about 40 Euro / person / ride
Hotels:
These hotels are relatively close to the meeting venue (Kirchhoff-Institute for Physics, see the map above). A lot more hotels are listed in online hotel booking sites (e.g. on booking.com)
Lightning talk: Adaptive control for hindlimb locomotion in a simulated mouse through temporal cerebellar learning
Thomas Passer Jensen, Shravan Tata, Auke Jan Ijspeert and Silvia Tolu
Human beings and other vertebrates show remarkable performance and efficiency in locomotion, but the functioning of their biological control systems for locomotion is still only partially understood. The basic patterns and timing for locomotion are provided by a central pattern generator (CPG) in the spinal cord. The cerebellum is known to play an important role in adaptive locomotion. Recent studies have given insights into the error signals responsible for driving the cerebellar adaptation in locomotion. However, the question of how the cerebellar output influences the gait remains unanswered. We hypothesize that the cerebellar correction is applied to the pattern formation part of the CPG. Here, a bio-inspired
control system for adaptive locomotion of the musculoskeletal system of the mouse is presented, where a cerebellar-like module adapts the step time by using the double support interlimb asymmetry as a temporal teaching signal. The control system is tested on a simulated mouse in a split-belt treadmill setup similar to those used in experiments with real mice. The results show adaptive locomotion behavior in the interlimb parameters similar to that seen in humans and mice. The control system adaptively decreases the double support asymmetry that occurs due to environmental perturbations in the split-belt protocol.
Thomas Passer Jensen (Technical University of Denmark)
17:10‑17:55 (45 min)
Open mic / discussions
19:00‑21:30 (150 min)
Poster dinner
The max. poster size is A0, orientation PORTRAIT (841 mm wide x 1189 mm high)
Wednesday, 18 March 2020
08:45
NICE 2020, workshpo day II -- NOTE: NICE will be postponed!
09:00‑09:15 (15 min)
Welcome / overview
09:15‑09:55 (40+5 min)
Keynote
Wolfgang Maass
10:00‑10:20 (20+5 min)
On the computational power and complexity of Spiking Neural Networks
NICE 2020, Tutorials day: NOTE: NICE will be POSTPONED!
The tutorial day can be booked as one of the registration options. On the tutorial day hands-on interactive tutorials with several different neuromorphic compute systems will be offered:
Intel Loihi platform tutorial (Lecture style. To follow along from your own laptop your need to engage with Intel’s Intel’s Neuromorphic Research Community beforehand (email inrc_interest@intel.com for more information).