Show this page for printing or as short info (with end time)

NICE 2021 - Agenda

(show all abstracts)
Tuesday, 16 March 2021

NICE #8


(The NICE#8 was initially planned to take place in 2020, but had to be postponed to 2021 due to COVID-19.)

Note: the exact order and timing of the talks is so far draft!

Times in the agenda are in CET (Berlin), EDT (New York), PDT (Los Angeles) and UTC. (Some other time zones: Australia, Japan, China, India, ... or only CET ... )

Meeting venue:

  • online as zoom video conference (live talks and Q and A). The zoom video conference client software (free of charge, available for Windows, Mac and Linux at zoom.us, also available for iOS and Android in the respective app stores ) is required.
  • please register here for NICE 2021

NEUROTECH Forum (15 March 2021)

Info: just before NICE on 15 March 2021 the NEUROTECH Forum II will take place online (free of charge. Registration for the forum event). The topic is "Neuromorphic Computing Technologies: Opportunities, challenges and Applications Roadmap".

CET: 14:00‑14:10
EDT: 09:00‑09:10
PDT: 06:00‑06:10
UTC: 13:00‑13:10
(10+5 min)
 
Welcome to NICE #8
CET: 14:15‑14:40
EDT: 09:15‑09:40
PDT: 06:15‑06:40
UTC: 13:15‑13:40
(25 min)
 
Organizer Round
CET: 14:40‑15:20
EDT: 09:40‑10:20
PDT: 06:40‑07:20
UTC: 13:40‑14:20
(40+5 min)
 
Keynote: Lessons from Loihi for the Future of Neuromorphic Computing

show abstract

Mike Davies (Intel)
CET: 15:25‑15:45
EDT: 10:25‑10:45
PDT: 07:25‑07:45
UTC: 14:25‑14:45
(20+5 min)
 
Why is Neuromorphic Event-based Engineering the future of AI?
Ryad Benjamin Benosman (UPITT/CMU/SORBONNE)
CET: 15:50‑16:10
EDT: 10:50‑11:10
PDT: 07:50‑08:10
UTC: 14:50‑15:10
(20+5 min)
 
The BrainScaleS mobile platform

show abstract

Johannes Schemmel (Heidelberg University)
CET: 16:15‑16:45
EDT: 11:15‑11:45
PDT: 08:15‑08:45
UTC: 15:15‑15:45
(30 min)
 
(break)
CET: 16:45‑16:55
EDT: 11:45‑11:55
PDT: 08:45‑08:55
UTC: 15:45‑15:55
(10 min)
 
Group photo (zoom screenshots)
CET: 16:55‑17:15
EDT: 11:55‑12:15
PDT: 08:55‑09:15
UTC: 15:55‑16:15
(20+5 min)
 
Evaluating complexity and resilience trade-offs in emerging memory inference machines
Christopher Bennett (Sandia National Labs)
CET: 17:20‑17:30
EDT: 12:20‑12:30
PDT: 09:20‑09:30
UTC: 16:20‑16:30
(10+5 min)
 
Lightning talk: From clean room to machine room: towards accelerated cortical simulations on the BrainScaleS wafer-scale system

show abstract

Sebastian Schmitt (Heidelberg University)
CET: 17:35‑17:55
EDT: 12:35‑12:55
PDT: 09:35‑09:55
UTC: 16:35‑16:55
(20+5 min)
 
Closed-loop experiments on the BrainScaleS-2 architecture

show abstract

Korbinian Schreiber (Heidelberg University)
CET: 18:00‑18:20
EDT: 13:00‑13:20
PDT: 10:00‑10:20
UTC: 17:00‑17:20
(20+5 min)
 
Batch << 1: Why Neuromorphic Computing Architectures Suit Real-Time Workloads
Jonathan Tapson (GrAI Matter Labs)
CET: 18:25‑18:45
EDT: 13:25‑13:45
PDT: 10:25‑10:45
UTC: 17:25‑17:45
(20+5 min)
 
Neuromorphic and AI research at BCAI (Bosch Center for Artificial Intelligence)
Thomas Pfeil (Bosch Center for Artificial Intelligence)
CET: 18:50‑19:10
EDT: 13:50‑14:10
PDT: 10:50‑11:10
UTC: 17:50‑18:10
(20+5 min)
 
Mapping Deep Neural Networks on SpiNNaker2
Florian Kelber (TU Dresden)
CET: 19:15‑19:45
EDT: 14:15‑14:45
PDT: 11:15‑11:45
UTC: 18:15‑18:45
(30 min)
 
Open mic / discussion
CET: 19:45
EDT: 14:45
PDT: 11:45
UTC: 18:45
End of day I
CET: 19:45‑20:45
EDT: 14:45‑15:45
PDT: 11:45‑12:45
UTC: 18:45‑19:45
(60 min)
(break)
CET: 21:00‑00:00
EDT: 16:00‑19:00
PDT: 13:00‑16:00
UTC: 20:00‑23:00
(180 min)
Tutorials: BrainScaleS and DYNAP-SE

Two tutorials/hands on in parallel:

  • BrainScaleS (note: the same BrainScaleS hands on tutorial is also offered on Thursday, 10:00-13:00h CET)
    • about 30 min introduction
    • hands-on usage of the BrainScaleS system (via web browser). Limited number of participants.
  • DYNAP-SE (note:the same DYNAP-SE hands on tutorial is also offered on Friday morning)
    • 1-hour live/interactive Dynapse demo: demo on a real Dynapse, take questions and implementing small changes from the audience.
    • 2-hour guided session where participants run a Jupyter notebook with simulations modelling Dynapse. This part is limited to 15 people per session.

For a description please see the tutorials page.


Wednesday, 17 March 2021
CET: 10:30‑12:00
EDT: 05:30‑07:00
PDT: 02:30‑04:00
UTC: 09:30‑11:00
(90 min)
Tutorial: SpiNNaker hands-on

(Note: the same SpiNNaker hands on tutorial is also offered on Thursday, 21:00 - 22:30h CET)

For a description please see the tutorials page.

Andrew Rowley (UMAN)
CET: 12:00‑14:00
EDT: 07:00‑09:00
PDT: 04:00‑06:00
UTC: 11:00‑13:00
(120 min)
(break)
CET: 14:00
EDT: 09:00
PDT: 06:00
UTC: 13:00
NICE - day II
CET: 14:00‑14:40
EDT: 09:00‑09:40
PDT: 06:00‑06:40
UTC: 13:00‑13:40
(40+5 min)
 
Keynote: From Brains to Silicon -- Applying lessons from neuroscience to machine learning

show abstract

Jeff Hawkins and Subutai Ahmad (Numenta)
CET: 14:45‑15:05
EDT: 09:45‑10:05
PDT: 06:45‑07:05
UTC: 13:45‑14:05
(20+5 min)
 
A Neuromorphic Future for Classic Computing Tasks
Brad Aimone (Sandia National Laboratories)
CET: 15:10‑15:20
EDT: 10:10‑10:20
PDT: 07:10‑07:20
UTC: 14:10‑14:20
(10+5 min)
 
Lightning talk: Benchmarking of Neuromorphic Hardware Systems

show abstract

Christoph Ostrau (Bielefeld University)
CET: 15:25‑15:45
EDT: 10:25‑10:45
PDT: 07:25‑07:45
UTC: 14:25‑14:45
(20+5 min)
 
Natural density cortical models as benchmarks for universal neuromorphic computers

show abstract

Markus Diesmann (Forschungszentrum Jülich GmbH)
CET: 15:50‑16:15
EDT: 10:50‑11:15
PDT: 07:50‑08:15
UTC: 14:50‑15:15
(25 min)
 
Poster Lightning Talks

1 min - 1 slide poster appetizers

CET: 16:15‑17:15
EDT: 11:15‑12:15
PDT: 08:15‑09:15
UTC: 15:15‑16:15
(60 min)
 
Poster session A and coffee
CET: 17:15‑17:35
EDT: 12:15‑12:35
PDT: 09:15‑09:35
UTC: 16:15‑16:35
(20+5 min)
 
Platform-Agnostic Neural Algorithm Composition using Fugu
William Severa (Sandia National Laboratories)
CET: 17:40‑17:50
EDT: 12:40‑12:50
PDT: 09:40‑09:50
UTC: 16:40‑16:50
(10+5 min)
 
Lightning talk: Implementing Backpropagation for Learning on Neuromorphic Spiking Hardware

show abstract

Andrew Sornborger (Los Alamos National Laboratory)
CET: 17:55‑18:15
EDT: 12:55‑13:15
PDT: 09:55‑10:15
UTC: 16:55‑17:15
(20+5 min)
 
Inductive bias transfer between brains and machines

show abstract

Fabian Sinz (University Tübingen)
CET: 18:20‑18:30
EDT: 13:20‑13:30
PDT: 10:20‑10:30
UTC: 17:20‑17:30
(10+5 min)
 
Lightning talk: Spike Latency Reduction generates Efficient Predictive Coding

show abstract

Pau Vilimelis Aceituno (ETH Zürich)
CET: 18:35‑18:45
EDT: 13:35‑13:45
PDT: 10:35‑10:45
UTC: 17:35‑17:45
(10+5 min)
 
Lightning talk: Cognitive Domain Ontologies: HPCs to Ultra Low Power Neuromorphic Platforms

show abstract

Chris Yakopcic (University of Dayton)
CET: 18:50‑19:20
EDT: 13:50‑14:20
PDT: 10:50‑11:20
UTC: 17:50‑18:20
(30 min)
 
Open mic / discussion
CET: 19:20‑20:20
EDT: 14:20‑15:20
PDT: 11:20‑12:20
UTC: 18:20‑19:20
(60 min)
 
(break)

Thursday, 18 March 2021
CET: 10:00‑13:00
EDT: 05:00‑08:00
PDT: 02:00‑05:00
UTC: 09:00‑12:00
(180 min)
Tutorial: BrainScaleS hands-on

(Note: the same BrainScaleS hands on tutorial is also offered on Tuesday evening)

  • about 30 min introduction
  • hands-on usage of the BrainScaleS system (via web browser). Limited number of participants.

For a description of the pre-requirements, please see the tutorials page.

CET: 13:00‑14:00
EDT: 08:00‑09:00
PDT: 05:00‑06:00
UTC: 12:00‑13:00
(60 min)
(break)
CET: 14:00
EDT: 09:00
PDT: 06:00
UTC: 13:00
NICE - day III
CET: 14:00‑14:40
EDT: 09:00‑09:40
PDT: 06:00‑06:40
UTC: 13:00‑13:40
(40+5 min)
 
Keynote: Biological inspiration for improving computing and learning in spiking neural networks

show abstract

Wolfgang Maass (Graz University of Technology)
CET: 14:45‑15:05
EDT: 09:45‑10:05
PDT: 06:45‑07:05
UTC: 13:45‑14:05
(20+5 min)
 
On the computational power and complexity of Spiking Neural Networks
Johan Kwisthout (Radboud Universiteit Nijmegen)
CET: 15:10‑15:30
EDT: 10:10‑10:30
PDT: 07:10‑07:30
UTC: 14:10‑14:30
(20+5 min)
 
Evolutionary Optimization for Neuromorphic Systems

show abstract

Catherine Schuman (Oak Ridge )
CET: 15:35‑15:55
EDT: 10:35‑10:55
PDT: 07:35‑07:55
UTC: 14:35‑14:55
(20+5 min)
 
An event-based gas sensing device that resolves fast transients in a turbulent environment
Michael Schmuker (University of Hertfordshire)
CET: 16:00‑16:20
EDT: 11:00‑11:20
PDT: 08:00‑08:20
UTC: 15:00‑15:20
(20+5 min)
 
Sequence learning, prediction, and generation in networks of spiking neurons

Sequence learning, prediction and generation has been proposed to be the universal computation performed by the neocortex. The Hierarchical Temporal Memory (HTM) algorithm realizes this form of computation. It learns sequences in an unsupervised and continuous manner using local learning rules, permits a context-specific prediction of future sequence elements, and generates mismatch signals in case the predictions are not met. While the HTM algorithm accounts for a number of biological features such as topographic receptive fields, nonlinear dendritic processing, and sparse connectivity, it is based on abstract discrete-time neuron and synapse dynamics, as well as on plasticity mechanisms that can only partly be related to known biological mechanisms.

Here, we devise a continuous-time implementation of the temporal-memory (TM) component of the HTM algorithm, which is based on a recurrent network of spiking neurons with biophysically interpretable variables and parameters. The model learns non-Markovian sequences by means of a structural Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic control. In combination with nonlinear dendritic input integration and local inhibitory feedback, this type of plasticity leads to the dynamic self-organization of narrow sequence-specific feedforward subnetworks. These subnetworks provide the substrate for a faithful propagation of sparse, synchronous activity, and, thereby, for a robust, context-specific prediction of future sequence elements as well as for the autonomous replay of previously learned sequences.

By strengthening the link to biology, our implementation facilitates the evaluation of the TM hypothesis based on experimentally accessible quantities. The continuous-time implementation of the TM algorithm permits, in particular, an investigation of the role of sequence timing for sequence learning, prediction and replay. We demonstrate this aspect by studying the effect of the sequence speed on the sequence learning performance and on the speed of autonomous sequence replay.

Younes Bouhadjar (Forschungszentrum Juelich)
CET: 16:25‑17:25
EDT: 11:25‑12:25
PDT: 08:25‑09:25
UTC: 15:25‑16:25
(60 min)
 
Poster session b and coffee
CET: 17:25‑17:45
EDT: 12:25‑12:45
PDT: 09:25‑09:45
UTC: 16:25‑16:45
(20+5 min)
 
Walter Senn (Universität Bern)
CET: 17:50‑18:10
EDT: 12:50‑13:10
PDT: 09:50‑10:10
UTC: 16:50‑17:10
(20+5 min)
 
Conductance-based dendrites perform reliability-weighted opinion pooling

show abstract

Jakob Jordan (Institute of Physiology, University of Bern)
CET: 18:15‑18:25
EDT: 13:15‑13:25
PDT: 10:15‑10:25
UTC: 17:15‑17:25
(10+5 min)
 
Lightning talk: Natural gradient learning for spiking neurons

show abstract

Elena Kreutzer (University of Bern)
CET: 18:30‑18:50
EDT: 13:30‑13:50
PDT: 10:30‑10:50
UTC: 17:30‑17:50
(20+5 min)
 
Making spiking neurons more succinct with multi-compartment models
Johannes Leugering (Fraunhofer IIS)
CET: 18:55‑19:05
EDT: 13:55‑14:05
PDT: 10:55‑11:05
UTC: 17:55‑18:05
(10+5 min)
 
Lightning talk: The Computational Capacity of Mem-LRC Reservoirs
Forrest Sheldon (Los Alamos National Lab - T-4/CNLS)
CET: 19:10‑19:40
EDT: 14:10‑14:40
PDT: 11:10‑11:40
UTC: 18:10‑18:40
(30 min)
 
Open mic / discussion
CET: 19:40‑20:50
EDT: 14:40‑15:50
PDT: 11:40‑12:50
UTC: 18:40‑19:50
(70 min)
(break)
CET: 21:00‑22:30
EDT: 16:00‑17:30
PDT: 13:00‑14:30
UTC: 20:00‑21:30
(90 min)
Tutorial: SpiNNaker hands-on

(Note: the same SpiNNaker hands on tutorial is also offered on Wednesday, 10:30-12:00h CET)

For a description please see the tutorials page.


Friday, 19 March 2021
CET: 10:00‑13:00
EDT: 05:00‑08:00
PDT: 02:00‑05:00
UTC: 09:00‑12:00
(180 min)
Tutorial:: DYNAP-SE

(Note: the same DYNAP-SE tutorial is also offered on Tuesday evening)

  • 1-hour live/interactive Dynapse demo: demo on a real Dynapse, take questions and implementing small changes from the audience.
  • 2-hour guided session where participants run a Jupyter notebook with simulations modelling Dynapse. This part is limited to 15 people per session.
CET: 13:00‑14:00
EDT: 08:00‑09:00
PDT: 05:00‑06:00
UTC: 12:00‑13:00
(60 min)
(break)
CET: 14:00
EDT: 09:00
PDT: 06:00
UTC: 13:00
NICE - day IV
CET: 14:00‑14:40
EDT: 09:00‑09:40
PDT: 06:00‑06:40
UTC: 13:00‑13:40
(40+5 min)
 
Keynote: Bottom-up and top-down neuromorphic processor design: Unveiling roads to embedded cognition

show abstract

Charlotte Frenkel (Institute of Neuroinformatics, Zürich, Switzerland)
CET: 14:45‑14:55
EDT: 09:45‑09:55
PDT: 06:45‑06:55
UTC: 13:45‑13:55
(10+5 min)
 
Lightning talk: Subspace Locally Competitive Algorithms

show abstract

Dylan Paiton (University of Tübingen)
CET: 15:00‑15:20
EDT: 10:00‑10:20
PDT: 07:00‑07:20
UTC: 14:00‑14:20
(20+5 min)
 
Programming neuromorphic computers: PyNN and beyond
Andrew Davison (CNRS)
CET: 15:25‑15:35
EDT: 10:25‑10:35
PDT: 07:25‑07:35
UTC: 14:25‑14:35
(10+5 min)
 
Lightning talk: TBD
William Kay (Oak Ridge National Laboratory)
CET: 15:40‑16:00
EDT: 10:40‑11:00
PDT: 07:40‑08:00
UTC: 14:40‑15:00
(20+5 min)
 
BrainScaleS: Development Methodologies and Operating System

show abstract

Eric Müller (Heidelberg University)
CET: 16:05‑16:15
EDT: 11:05‑11:15
PDT: 08:05‑08:15
UTC: 15:05‑15:15
(10+5 min)
 
Lightning talk: Evolving Spiking Neural Networks for Robot Sensory-motor Decision Tasks of Varying Difficulty

show abstract

J. David Schaffer (Binghamton University)
CET: 16:20‑16:50
EDT: 11:20‑11:50
PDT: 08:20‑08:50
UTC: 15:20‑15:50
(30 min)
 
Coffee break
CET: 16:50‑17:10
EDT: 11:50‑12:10
PDT: 08:50‑09:10
UTC: 15:50‑16:10
(20+5 min)
 
Relational Neurogenesis for Lifelong Learning Agents
Tej Pandit (University of Texas at San Antonio)
CET: 17:15‑17:25
EDT: 12:15‑12:25
PDT: 09:15‑09:25
UTC: 16:15‑16:25
(10+5 min)
 
Lightning talk: Fast and deep neuromorphic learning with first-spike coding

show abstract

Julian Goeltz (Kirchhoff Institut fuer Physik, Universitaet Heidelberg)
CET: 17:30‑17:40
EDT: 12:30‑12:40
PDT: 09:30‑09:40
UTC: 16:30‑16:40
(10+5 min)
 
Lightning talk: Neuromorphic Computing for Spacecraft’s Terrain Relative Navigation: A Case of Event-Based Crater Classification Task
Kazuki Kariya (The Graduate University for Advanced Studies, SOKENDAI)
CET: 17:45‑18:05
EDT: 12:45‑13:05
PDT: 09:45‑10:05
UTC: 16:45‑17:05
(20+5 min)
 
Beyond Backprop: Different Approaches to Credit Assignment in Neural Nets

show abstract

Irina Rish (MILA / Université de Montréal )
CET: 18:10‑18:20
EDT: 13:10‑13:20
PDT: 10:10‑10:20
UTC: 17:10‑17:20
(10+5 min)
 
Lightning talk: Comparing Neural Accelerators & Neuromorphic Architectures The False Idol of Operations

show abstract

Craig Vineyard (Sandia National Laboratories )
CET: 18:25‑18:45
EDT: 13:25‑13:45
PDT: 10:25‑10:45
UTC: 17:25‑17:45
(20+5 min)
 
Real-time Mapping on a Neuromorphic Processor

show abstract

Konstantinos Michmizos
CET: 18:50‑19:20
EDT: 13:50‑14:20
PDT: 10:50‑11:20
UTC: 17:50‑18:20
(30 min)
 
Wrap up / farewell
CET: 19:20
EDT: 14:20
PDT: 11:20
UTC: 18:20
End of NICE 2021
Contact: bjoern.kindler@kip.uni-heidelberg.de